paper读书笔记

1.spark

var text_file=sc.textfile('/input)

var word=text_file.flatmap(line=>line.split("")).map(word=>(word,1)).reduceByKey(_+_)

var out=word.count()

统计有多少个不同的单词

2.推荐系统衡量指标

离线评估方法:

holdout评估:70%训练集,10%验证集,20%测试集

交叉检验:k-fold交叉验证(一般取10份,然后轮流做训练集+测试集)

留一验证:每次留下1个样本作为验证集,其余所有样本作为测试集

自助法:不断进行有放回采样作为测试集,没采到的最后作为测试集(占比30%)左右

离线评估的主要指标

准确率:分类准确率是指分类正确的样本占总样本个数的比例

精确率和召回率:

  • 精确率(Precision)是分类正确的正样本个数占分类器判定为正样本的样本个数的比例

  • 召回率(Recall)是分类正确的正样本个数占真正正样本个数的比例

  • F1-score进行调和(也叫F-measure),定义为:1/f=1/p+1/r

均方根误差

如果存在个别偏离程度非常大的离群点,那么即使离群点的数量非常少,也会让RMSE指标变得很差 

MAPE:

 对数损失函数

LogLoss,在一个二分类问题中,LogLoss定义为:

直接评估推荐序列的离线指标:

在某一阈值下,模型将大于该阈值的结果判定为正样本,将小于该阈值的结果判定为负样本时,排序结果对应的召回率和精确率

ROC曲线

「受试者工作特征曲线」

ROC曲线的横坐标时 False Posotive Rate(FPR, 假阳性率),纵坐标时True Positive Rate(TPR,真阳性率)

平均精度均值

AP的计算只取正样本处的precision进行平均,即 AP= (1/1 + 2/4 + 3/5 + 4/6) =0.6917

除了上述介绍的几种评估指标,推荐系统的评估指标还包括:

  • 归一化折损累计收益(Normalized Discounted Cumulative Gain,NDCG

  • 覆盖率(Coverage)

  • 多样性(diversity)

更接近线上环境的离线评估方法-Replay

动态离线评估方法

  • 先根据样本产生时间对测试样本由早到晚进行排序,再用模型根据样本时间依次进行预测,在模型更新的时间点上,模型需要增量学习更新时间点前的测试样本,更新后继续进行后续的评估。

A/B测试与线上评估

 注意样本等独立性和无偏性,同一用户在测试的全程中只能被分到同一个桶中。

  • 层与层之间的流量正交,即层与层之间的独立实验的流量是正交的,即实验中每组的流量穿越该层后,都会被再次随机打散,且均匀的分布再下层的每个实验中

  • 同层之间的流量互斥,即

    • 同层之间进行多组A/B测试,不同测试之间的流量是不重叠的

    • 一组A/B测试中实验组和对照组的流量是不重叠的,是互斥的

电商推荐场景

抖音推荐

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值