确认!微信+DeepSeek来了!

近日
部分微信用户发现
微信搜索已经上线“AI搜索”功能
并接入DeepSeek-R1
提供的“深度思考”服务

2月16日
记者从腾讯集团确认
微信搜一搜
在调用混元大模型丰富AI搜索的同时
正式灰度测试接入DeepSeek

图片图片

腾讯方面表示,部分测试用户

可在微信对话框顶部搜索入口
看到**“AI搜索****”**字样点击进入后
可免费使用DeepSeek-R1满血版模型
获得更多元化的搜索体验
若未显示该入口
说明此次灰度测试暂未覆盖到该用户账号
可耐心等待后续开放

图片

另外,微信的功能介绍页面显示
本产品涉及
对DeepSeek开源大模型的提供与使用

DeepSeek系列开源大模型
由深度求索(DeepSeek)公司提供
特此鸣谢
深度求索公司与DeepSeek开源社区
对大模型开源及相关研究的贡献

图片

图片

分析称
DeepSeek在自然语言处理上的优势
能提升微信搜索的精准度
AI可结合聊天记录、公众号内容
提供个性化答案
DeepSeek的开源属性与微信生态契合
未来可拓展智能客服等场景

此外,2月13日
腾讯AI助手“腾讯元宝”迎来重大更新
同时支持混元和DeepSeek两大模型
打开腾讯元宝并进入对话界面
即可免费使用DeepSeek-R1满血版模型

图片

据介绍,腾讯元宝提供的DeepSeek
支持联网搜索
并整合了微信公众号、视频号等
腾讯生态信息源
能为用户提供
更稳定、实时、全面、准确的回答

有网友评论

“国运级AI+国民级应用

真正的王炸组合”

图片

图片

**快看一下
你的微信接入DeepSeek了吗?
图片

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

### 构建微信小程序集成DeepSeek教程 #### 准备工作 在开始之前,确保已经拥有微信小程序账号并完成开发者认证。此外,还需获取DeepSeek API密钥以便于后续调用服务。 #### 创建项目结构 创建一个新的微信小程序项目,在项目的`app.js`文件中引入必要的依赖库来处理HTTP请求以及解析JSON数据[^2]。 ```javascript // app.js App({ onLaunch() { console.log('App Launch'); }, }) ``` #### 配置API接口 为了简化开发流程,可以在utils目录下新建api.js用于封装访问DeepSeek的服务端逻辑。这里展示了一个简单的POST方法用来发送查询给DeepSeek引擎。 ```javascript // utils/api.js const request = require('./request'); function deepseekQuery(query) { const url = 'https://deepseek.example.com/query'; // 替换成实际地址 return request.post(url, { query }); } module.exports = { deepseekQuery, }; ``` #### 实现聊天界面交互 编辑pages/index/index.wxml页面布局,设计输入框和消息列表显示区域以支持用户与AI之间的对话交流。 ```html <!-- pages/index/index.wxml --> <view class="container"> <scroll-view scroll-y> <!-- 显示历史记录 --> <block wx:for="{{messages}}" wx:key="id"> <text>{{item}}</text> </block> </scroll-view> <!-- 输入框 --> <input bindinput="handleInput" placeholder="请输入..." /> </view> ``` #### 编写业务逻辑代码 最后一步是在对应的js文件里编写主要的功能实现部分,比如监听用户的键盘事件触发向服务器发起请求并将返回的结果更新到视图上. ```javascript // pages/index/index.js Page({ data: { messages: [], inputValue: '', }, onLoad() {}, handleInput(e) { this.setData({ inputValue: e.detail.value }); if (e.detail.keyCode === 13 && this.data.inputValue.trim()) { const message = this.data.inputValue; api.deepseekQuery(message).then(response => { let updatedMessages = [...this.data.messages]; updatedMessages.push(`我: ${message}`); updatedMessages.push(`DeepSeek: ${response.result}`); this.setData({ messages: updatedMessages, inputValue: '' }); }); } }, }); ``` 通过上述步骤即可快速搭建起基于DeepSeek技术驱动的小程序应用原型,允许用户与其展开自然语言形式下的互动体验.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值