大模型预训练、微调与蒸馏:一篇文章讲透核心,看完这篇就够了

在大模型的开发和应用中,预训练、微调和蒸馏是三个至关重要的环节。理解这三者的原理、区别和联系,对于充分发挥大模型的潜力、提升模型性能以及降低应用成本具有重要意义。接下来,让我们深入探究大模型的预训练、微调和蒸馏。
img

1、预训练(Pre-training)

1.1 预训练的概念与重要性

  • 预训练是大模型开发的基础阶段,模型在海量无监督数据上训练,学习通用模式、特征和知识。
  • 例如在自然语言处理领域,会基于新闻、小说、论文等大量文本预训练,掌握语言语法、语义、语用知识,构建通用理解能力。
  • 以 GPT-3 为例,使用数万亿单词的大规模语料库预训练,获得通用知识,为后续特定任务表现奠定基础。
  • 类比来说,预训练就像学生广泛学习积累知识,为后续专业学习(微调)做准备。

1.2 预训练的技术原理

  • 采用 Transformer 架构:核心组件包含自注意力机制、多头注意力、位置编码和前馈神经网络。

  • 自注意力机制:计算输入序列中 token 相关性,捕捉长距离依赖关系,如理解 “我喜欢苹果,因为它富含维生素” 中 “它” 指代 “苹果”。

  • 多头注意力:并行运行多组自注意力机制,从多视角理解输入,增强模型表达能力,捕捉更丰富语义特征。

  • 位置编码:为输入序列添加位置信息,弥补 Transformer 无顺序感知的缺陷,助于理解语言顺序和逻辑。

  • 前馈神经网络:对每个 token 进行非线性变换,加工自注意力机制输出信息,提取高级特征。

训练方式 :

  • 自回归(如 GPT 系列):逐词预测下一个 token,如给定 “我今天去了”,预测 “超市”“公园” 等。
  • 自编码(如 BERT):采用掩码语言建模(MLM),根据上下文预测被遮蔽单词,如预测 “我喜欢 [MASK]” 中的 “读书”。

1.3 预训练面临的挑战与解决方案

  • 面临挑战:大模型参数量巨大(如 GPT-3 有 1750 亿参数),存在计算资源、内存和优化效率问题。

解决方案 :

  • 混合精度训练:结合 FP16 和 FP32 计算,对精度要求不高操作使用 FP16,关键计算用 FP32,减少显存占用并加速训练。

  • 梯度检查点:牺牲计算时间换取显存优化,计算梯度时不保存所有中间层激活值,需用时重新计算。

分布式训练:采用数据并行、模型并行或流水线并行等方式。

  • 数据并行:划分数据到不同节点,各节点计算部分数据梯度后汇总更新。
  • 模型并行:将模型不同部分分配到不同节点计算。
  • 流水线并行:将模型计算过程分阶段,不同阶段在不同节点并行执行,加速预训练。

1. Introduction — Pre-Training and Fine-Tuning BERT for the IPU

2、微调(Fine-tuning)

2.1 微调的概念与作用

微调是在预训练模型的基础上,使用特定任务的小规模标注数据进行有监督训练,调整模型参数以适应目标场景。虽然预训练模型已经具备了强大的通用能力,但在面对具体的应用任务时,往往需要进一步优化以达到更好的性能。

例如,在医疗领域的疾病诊断文本分类任务中,预训练模型可能对一般的语言理解有很好的基础,但对于医疗专业术语、疾病症状描述等特定领域的知识和任务需求的理解还不够精准。通过使用医疗领域的标注数据对预训练模型进行微调,模型可以学习到医疗领域的语言模式和分类规则,从而能够更准确地对医疗文本进行疾病诊断分类。微调就像是对已经具备广泛知识的大模型进行 “专业培训”,使其能够更好地完成特定领域或任务的工作。

2.2 微调的技术方法

2.2.1 全参数微调(Full Fine-tuning)

全参数微调是更新所有模型参数的微调方式。在这种方法中,模型在特定任务的标注数据上进行训练时,所有的参数都参与梯度更新。这种方式适用于数据量较大的场景,因为当有足够多的标注数据时,对所有参数进行调整可以让模型充分学习到任务相关的特征和模式,从而达到较高的性能。例如,在一些有大量标注数据的图像分类任务中,如果使用全参数微调,可以让模型针对该图像分类任务进行全面优化,提高分类的准确率。

2.2.2 参数高效微调(Parameter-Efficient Fine-tuning, PEFT)

随着大模型的参数规模不断增大,全参数微调面临着计算资源消耗大、内存需求高的问题。因此,参数高效微调技术应运而生。参数高效微调仅调整部分参数,在减少计算资源消耗和内存占用的同时,尽量保持模型的性能。常见的参数高效微调方法有以下几种:

  • Adapter:在 Transformer 层中插入小型网络模块。这些小型模块被称为适配器,通过训练适配器的参数,而冻结原模型的大部分参数,使得模型能够在特定任务上进行适应。适配器可以在不改变原模型主体结构的情况下,为模型添加特定任务相关的功能。例如,在一个自然语言处理的情感分析任务中,通过在 Transformer 层中插入适配器并对其进行训练,模型可以在不改变大量原参数的前提下,学会对文本情感的准确判断。

  • LoRA(Low-Rank Adaptation):通过低秩矩阵分解优化权重更新。LoRA 并不更新整个网络,而是在冻结的模型中引入可训练的低秩矩阵,使模型能够在不显著增加计算成本的情况下调整输出。这些低秩矩阵就像小旋钮一样,微调模型的响应,同时保持其基本结构不变。例如,在一个大规模的语言模型中,使用 LoRA 技术可以在有限的计算资源下,对模型进行针对特定任务的微调,大大减少了微调的内存占用,使得在消费级 GPU 上也能进行大模型的适应。

  • Prompt Tuning:通过学习软提示(Soft Prompts)调整模型行为。Prompt Tuning 是在输入文本前添加一段可训练的软提示,模型在处理输入时会结合软提示和原始文本进行计算。通过训练软提示的参数,引导模型更好地完成特定任务。比如在一个文本生成任务中,通过调整软提示的内容和参数,可以让模型生成更符合特定要求的文本,如生成特定风格的故事或文章。

2.3 微调的应用场景

微调在各种实际应用场景中都发挥着重要作用。在医疗领域,对于疾病诊断、医疗文本分析等任务,通过对大模型进行微调,可以利用模型的通用语言理解能力和医疗领域的标注数据,提高诊断的准确性和文本分析的专业性。在金融领域,对于风险预测、客户信用评估等任务,微调后的大模型可以更好地分析金融数据,识别风险因素和评估客户信用状况。在智能客服领域,通过微调大模型,可以让模型更好地理解客户的问题,提供更准确、更个性化的回答,提高客户满意度。

img

3、蒸馏(Knowledge Distillation)

3.1 蒸馏的概念与目的

蒸馏是一种将大型复杂模型(教师模型)的知识迁移到小型模型(学生模型)的技术。其目的是通过训练学生模型模仿教师模型的行为,实现模型压缩和性能保留的目标。在实际应用中,大型模型虽然性能强大,但往往存在计算成本高、推理速度慢、对硬件要求高等问题,不利于在资源受限的环境中部署,如移动设备、边缘设备等。

通过蒸馏技术,可以将大型模型学到的知识提取并迁移到小型模型中,使得小型模型在消耗更少资源的情况下,尽可能地接近大型模型的性能。例如,将一个在云端运行的大型语言模型的知识蒸馏到一个可以在手机上运行的小型模型中,这样手机端就可以在不消耗过多计算资源和电量的情况下,实现与大型模型相近的语言处理功能,如智能语音助手的实时交互等。

3.2 蒸馏的技术原理与实现方式

3.2.1 知识传递

蒸馏过程中的关键环节是知识传递。教师模型会生成高质量的软标签(概率分布),学生模型通过学习这些软标签来模仿教师的行为。与传统的硬标签(如类别标签 1、2、3 等)不同,软标签包含了模型对不同类别或输出的概率分布信息,能够传递更多的知识。例如,在一个图像分类任务中,对于一张图片,教师模型输出的软标签可能是 [0.2, 0.5, 0.3],表示它认为该图片属于类别 1 的概率是 0.2,属于类别 2 的概率是 0.5,属于类别 3 的概率是 0.3。学生模型通过学习这种软标签,不仅能够学习到最终的分类结果,还能学习到教师模型对不同类别之间的相对可能性的判断,从而更好地模仿教师模型的行为。

3.2.2 逐步蒸馏法

逐步蒸馏法是一种分步方法,通过逐步增加蒸馏过程中的复杂性,提升学生模型的性能。在开始阶段,学生模型可能只学习教师模型的一些简单特征和行为,随着蒸馏过程的推进,逐渐学习到更复杂、更高级的知识。例如,在自然语言处理的文本生成任务中,开始时学生模型可能只学习教师模型生成文本的基本语法和词汇选择模式,然后逐步学习到语义连贯性、逻辑推理等更高级的能力,通过这种逐步学习的方式,提高学生模型的性能和对教师模型知识的吸收效果。

3.2.3 剪枝与量化

蒸馏过程中常结合模型剪枝和量化技术,进一步压缩模型大小并降低计算成本。模型剪枝是移除模型中冗余的连接或参数,减少模型的复杂度。例如,在一个神经网络中,如果某些神经元之间的连接对模型的输出影响很小,就可以将这些连接剪掉。量化则是将模型的参数或计算数据类型转换为更低精度的表示,如将 32 位浮点数转换为 8 位整数或 4 位整数。通过剪枝和量化,可以在不显著影响模型性能的前提下,大幅减少模型的存储需求和计算量,使得蒸馏后的小型模型更加轻量化,更适合在资源受限的环境中部署。

3.3 蒸馏的应用场景

3.3.1 资源受限环境

如前文所述,蒸馏技术在资源受限环境中具有重要应用价值。在移动设备上,由于设备的计算能力、内存和电量有限,难以运行大型复杂的模型。通过蒸馏得到的小型模型可以在移动设备上高效运行,实现各种智能应用,如手机上的图像识别、语音识别、智能翻译等功能。在边缘设备领域,如智能家居设备、智能摄像头等,这些设备通常资源有限,需要能够快速处理数据且能耗低的模型。蒸馏后的小型模型可以满足这些需求,实现设备的智能化功能,如智能摄像头的实时目标检测、智能家居设备的语音控制等。

3.3.2 跨领域迁移

蒸馏技术可以将大型模型在一个领域学习到的知识迁移到不同领域的任务中,提高迁移学习的效果。例如,一个在大量自然语言文本上训练的大型语言模型,通过蒸馏可以将其语言理解和生成的知识迁移到一个特定领域的小型模型中,如法律领域的文本分析模型。小型模型可以利用从大型模型蒸馏得到的通用语言知识,结合少量法律领域的标注数据进行微调,快速适应法律领域的任务,提高模型在该领域的性能,减少在新领域从头训练模型的成本和时间。

3.3.3 多模态任务

蒸馏可用于处理多模态输入(如图像 + 文本)的复杂任务,提升模型的泛化能力。在多模态任务中,需要模型能够综合处理不同类型的数据,如在图文匹配任务中,模型需要同时理解图像和文本的内容,并判断它们是否匹配。通过蒸馏技术,可以将一个在多模态数据上训练的大型教师模型的知识迁移到小型学生模型中,使得小型模型也能够具备处理多模态任务的能力,并且在资源消耗较低的情况下,保持一定的泛化性能,能够应对不同场景下的多模态任务需求。

img

四、预训练、微调和蒸馏的关系与综合应用

4.1 三者的关系

预训练为大模型奠定了通用知识的基础,使得模型具备了对数据的基本理解和处理能力。微调则是在预训练的基础上,针对特定任务对模型进行优化,通过少量的标注数据调整模型参数,使模型适应具体的应用场景,提升在特定任务上的性能。蒸馏是将大型模型(通常是经过预训练和可能微调的模型)的知识迁移到小型模型中,实现模型的压缩和在资源受限环境下的高效部署。

可以说,预训练是大模型能力的基石,微调是将大模型适配到具体任务的关键步骤,而蒸馏则是在模型部署和资源利用方面的重要手段。它们相互关联,共同服务于大模型从开发到应用的整个流程。例如,先通过预训练得到一个具有强大通用能力的大型基础模型,然后针对特定任务进行微调,使其在该任务上表现出色,最后如果需要在资源受限的环境中部署,可以通过蒸馏将微调后的大型模型的知识迁移到小型模型中。

4.2 综合应用案例

在实际应用中,常常会综合运用预训练、微调和蒸馏技术。以智能医疗领域为例,首先使用大规模的医疗文本数据(包括医学论文、病历等)对一个大模型进行预训练,让模型学习到医疗领域的通用知识和语言模式。然后,针对特定的医疗任务,如疾病诊断分类,使用标注好的疾病诊断数据对预训练模型进行微调,优化模型参数,使其能够准确地对疾病诊断文本进行分类。最后,考虑到在医院的一些移动设备或边缘设备上需要实时进行疾病诊断辅助,通过蒸馏技术将微调后的大型模型的知识迁移到小型模型中,使得小型模型可以在这些资源受限的设备上快速运行,为医生提供实时的诊断建议。

在智能客服领域也是如此,先在大量的通用文本数据上对大模型进行预训练,然后使用企业自身的客服对话数据对模型进行微调,使其能够理解和回答与企业业务相关的问题。对于一些需要在手机 APP 等移动客户端上运行的智能客服功能,通过蒸馏技术得到小型模型,部署在客户端上,实现快速响应客户咨询,同时减少对客户端设备资源的占用。

通过综合应用预训练、微调和蒸馏技术,可以充分发挥大模型的优势,在不同的场景下实现高效、准确的人工智能应用,推动人工智能技术在各个领域的广泛应用和发展。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值