在深度学习中,Epoch、Batch_size和Iterations是调节模型训练过程的三个重要参数,它们共同影响着训练的效率和模型的性能。今天,我们就来聊聊这三个常见参数的概念和联系。
摘自:一文看懂大模型训练关键参数Epoch、Batch_size和Iterations
1、Batch_size(批大小)
定义:Batch_size是指在一次训练中,模型处理的样本数量。也是每次迭代中用于更新模型权重的样本数量。在训练过程中,我们通常不会一次性将所有样本输入模型,而是将数据分成若干个批次,每个批次包含一定数量的样本。这样做的目的是提高计算效率,充分利用计算资源,同时避免因内存不足而导致的训练失败。Batch_size的选择会影响模型的收敛速度和训练效果,需要根据实际情况进行调整。
作用:它决定了每次训练所使用的样本数量,使用较小的Batch_size可以增加模型的泛化能力(因为权重更新更频繁,且每次更新的方向可能略有不同),但训练可能会更慢。相反,较大的Batch_size可以提高训练速度,因为可以一次性处理更多的数据。但是,如果Batch_size设置得太大,可能会导致GPU内存不足。
选择:通常需要根据GPU内存的大小和训练数据集的规模来选择一个合适的Batch_size。