大模型训练关键参数Epoch、Batch_size和Iterations

       在深度学习中,Epoch、Batch_size和Iterations是调节模型训练过程的三个重要参数,它们共同影响着训练的效率和模型的性能。今天,我们就来聊聊这三个常见参数的概念和联系。

摘自:一文看懂大模型训练关键参数Epoch、Batch_size和Iterations

1、Batch_size(批大小)

       定义:Batch_size是指在一次训练中,模型处理的样本数量。也是每次迭代中用于更新模型权重的样本数量。在训练过程中,我们通常不会一次性将所有样本输入模型,而是将数据分成若干个批次,每个批次包含一定数量的样本。这样做的目的是提高计算效率,充分利用计算资源,同时避免因内存不足而导致的训练失败。Batch_size的选择会影响模型的收敛速度和训练效果,需要根据实际情况进行调整。

       作用:它决定了每次训练所使用的样本数量,使用较小的Batch_size可以增加模型的泛化能力(因为权重更新更频繁,且每次更新的方向可能略有不同),但训练可能会更慢。相反,较大的Batch_size可以提高训练速度,因为可以一次性处理更多的数据。但是,如果Batch_size设置得太大,可能会导致GPU内存不足。

       选择:通常需要根据GPU内存的大小和训练数据集的规模来选择一个合适的Batch_size。

2、Epoch(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YoungerChina

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值