编码器

[整理自网络]

编码器常用概念包括:线、位、分辨率、增量式、绝对式。

线:编码器光电码盘的一周刻线,增量式码盘刻线可以10线、100线、2500线的刻线,只要你码盘能刻得下,可任意选数绝对值码盘其码盘刻线因格雷码的编排方式,决定其基本是2的幂次方线,如256线、1024线、8192线等。但绝对值码盘也有特别的格雷余码输出的,如360线、720线、3600线等。

2n次方,由于绝对值码盘常常是2的幂次方线输出,所以,大部分的绝对值码盘是以来表达,但也有例外,如360线、720线、3600线的(格雷余码)。增量值编码器也有用位来表示的,如15位、17位,其是通过内部细分,将计算的线数倍增后,一般大于10000线了,就用来表达。

分辨率:编码器可以分辨的角度,对于一般计算,以360/刻线数计算,目前大部分就直接用多少线来表达了。但这样就有一些概念的混淆,如增量值编码器,如用上A/B两相的四倍频,2500线的,分辨率实际可以是360/10000的,如果内部细分计算的线可以更多,达到15位、17位的,所以,常常的增量编码器用线来表达的,代表还没有倍频细分,用来表达的,是已经细分过的了。

增量式:码盘内刻线是两道:A/BZ,通过数线累加(增量)计算旋转角度,有的增加了U/V/W,将编码器通过120度的分割,分成三个区来判断位置,称为混合型编码器。有的通过内部细分电路,提高分辨线,并用内部电池记忆及用来表达,常常混称为绝对值,实际应该是伪绝对

绝对式:码盘内刻线是n道,以24816。。。编排组合,读数是以“0”“1”编码方式光盘直接读取,而非累加,故不受停电、干扰影响。

至于增量,绝对哪个分辨率及精度更高,如果是实际的码盘刻线,绝对值码盘分辨可以是增量码盘的一倍,如果是倍频技术,那增量值码盘分辨"又可以大于绝对值,但注意,我用的是分辨数,不代表精度,因为细分倍频是电气模拟技术,并不改善精度,精度是由码盘刻线、轴的机械安装、电气的响应综合因数决定的。综合来看,分辨率,是增量的可以做的比绝对的高,而精度,就是绝对值的高了,因为它是不受停电、干扰、速度、电气响应的影响的,尤其是高精度又要高速的情况下,增量细分是无法满足要求的。

欧洲市场伺服用绝对值多圈

每圈分辨率:138192线;1665536线;17131072线;2533554432线!(德国海德汉的,目前我们可以提供的最高可以到25位每圈,国产的每圈16位)。

连续测量圈数:大多数124096圈,少数1416384圈。

总位数25--37位。(目前我们可以提供的分辨率+圈数最高可以到37位,德国海德汉;国产的28GEMPLE

输出信号:

SSI+sin/cos,1MHz,格雷码

Biss,2MHz,纯二进制码

Hipeface+sin/cos,2MHz,纯二进制码(含校验)

Endat,8MHz,纯二进制码,CRC( 最高每圈25位,真的是高精度高速啊。

过去SSI较多,现在HipefaceEnDat是趋势,尤其是EnDat2.2,技术发展后劲明显。

展开阅读全文

编码器模型

01-03

<p>rn <br />rn</p>rn<p>rn <p>rn 20周年限定:唐宇迪老师一卡通!<span style="color:#337FE5;">可学唐宇迪博士全部课程</span>,仅售799元(原价10374元),<span style="color:#E53333;">还送漫威授权机械键盘+CSDN 20周年限量版T恤+智能编程助手!</span>rn </p>rn <p>rn 点此链接购买:rn </p>rn <table>rn <tbody>rn <tr>rn <td>rn <span style="color:#337FE5;"><a href="https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy" target="_blank">https://edu.csdn.net/topic/teachercard?utm_source=jsk20xqy</a><br />rn</span>rn </td>rn </tr>rn </tbody>rn </table>rn</p>rn购买课程后,可扫码进入学习群<span>,获取唐宇迪老师答疑</span> rn<p>rn <br />rn</p>rn<p>rn <img src="https://img-bss.csdn.net/201908070547382200.jpg" alt="" /> rn</p>rn<p>rn Keras项目实战课程从实战的角度出发,基于真实数据集与实际业务需求,从零开始讲解如何进行数据处理,模型训练与调优,最后进行测试与结果展示分析。全程实战操作,以最接地气的方式详解每一步流程与解决方案。课程结合当下深度学习热门领域,以计算机视觉与自然语言处理为核心讲解各大网络的应用于实战方法,适合快速入门与进阶提升。rn任务作业:rn1.基于Keras构建VGG网络模型rn2.加载与预处理细胞图像数据rn3.构建完成分类模型并进行测试识别rn(注意: 作业需写在CSDN博客中,请把作业链接贴在评论区,老师会定期逐个批改~~)rn</p>

没有更多推荐了,返回首页