深度学习入门论文(图像识别领域)

深度学习的突破,始于ImageNet比赛。

介绍四篇深度学习在图像方面的paper:

Imagenet classification with deep convolutional neural networks
(简称AlexNet,发表于2012年NIPS上,被视为深度学习突破之作)

Very deep convolutional networks for large-scale image recognition
(简称VGGNet,发表于2015年ICLR上,网络变得很深)

Going deeper with convolutions
(简称GoogLeNet,发表于2015年CVPR上,Google研究成果)

Deep residual learning for image recognition
(简称ResNet,2015年CVPR best paper,网络变得非常深)

尤其推荐第一篇和第四篇paper

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值