深度学习的突破,始于ImageNet比赛。
介绍四篇深度学习在图像方面的paper:
Imagenet classification with deep convolutional neural networks
(简称AlexNet,发表于2012年NIPS上,被视为深度学习突破之作)
Very deep convolutional networks for large-scale image recognition
(简称VGGNet,发表于2015年ICLR上,网络变得很深)
Going deeper with convolutions
(简称GoogLeNet,发表于2015年CVPR上,Google研究成果)
Deep residual learning for image recognition
(简称ResNet,2015年CVPR best paper,网络变得非常深)
尤其推荐第一篇和第四篇paper