无人机目标检测-目标小环境复杂问题

本代码场景是无人机飞行识别检测,测过在300m高空检测地面挖机,1400张数据集,识别率很高,还是不错的,yolov5版本。

 print("下载图片数据")
    begin_time = time.time()
    mateSourceImgUrl1=mateSourceImgUrl
    # 发送网络请求获取图片数据
    response = requests.get(mateSourceImgUrl)
    # 将图片数据转换为numpy数组
    image_array = np.array(bytearray(response.content), dtype=np.uint8)
    image_cv2 = cv2.imdecode(image_array, -1)
    # 将OpenCV格式的图片转换为PIL的Image对象
    mateSourceImg = Image.fromarray(cv2.cvtColor(image_cv2, cv2.COLOR_BGR2RGB))

    response1= requests.get(sourceImgUrl)
    # 将图片数据转换为numpy数组
    image_array1 = np.array(bytearray(response1.content), dtype=np.uint8)
    image_cv21 = cv2.imdecode(image_array1, -1)
    # 将OpenCV格式的图片转换为PIL的Image对象
    sourceImg = Image.fromarray(cv2.cvtColor(image_cv21, cv2.COLOR_BGR2RGB))

    print("将图片封装成image对象")
    # 创建 Data_test 类的实例
    test_set = RS.Data_test(sourceImgUrl=sourceImg, mateSourceImgUrl=mateSourceImg,url=mateSourceImgUrl1)
    test_loader = DataLoader(test_set, batch_size=opt.pred_batch_size)
    img=predict_one(net, test_loader)
    #过滤树木,水面,广场
    img=postprocess_image(img)

    # 将PIL Image对象转换为numpy数组
    np_array_A = np.array(sourceImg)
    print("将结果融合到对比图上")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值