图像处理九:拟合曲线

该博客详细探讨了图像处理中三种重要的拟合曲线方法:最小二乘法、高斯分布和多项式拟合。通过这些技术,可以更好地理解和分析图像数据的特征。
摘要由CSDN通过智能技术生成

一、最小二乘法拟合曲线

import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

#自定义函数 e指数形式
def func(x, a, b,c):
    return a*np.sqrt(x)*(b*np.square(x)+c)

#定义x、y散点坐标
x = [10,20,30,40,50,60,70,80]
x = np.array(x)
y = [158,455,265,152,263,813,562,126]
y = np.array(y)

#非线性最小二乘法拟合
popt, pcov = curve_fit(func, x, y)
#获取popt里面是拟合系数
print(popt)
a = popt[0]
b = popt[1]
c = popt[2]
yvals = func(x,a,b,c) #拟合y值
print('popt:', popt)
print('系数a:', a)
print('系数b:', b)
print('系数c:', c)
print('系数pcov:', pcov)
print('系数yvals:', yvals)
#绘图
plot1 = plt.plot(x, y, 's',label='original values')
plot2 = plt.plot(x, yvals, 'r',label='polyfit values')
plt.xlabel('x')
plt.ylabel('y')
plt.legend(loc=4) #指定legend的位置右下角
plt.title('curve_fit')
plt.show()

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

蹦跶的小羊羔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值