faster rcnn 损失函数

该博客深入探讨了Faster R-CNN的损失函数,包括RPN和RCNN两部分。RPN损失主要涉及锚点的前景/背景分类和回归,而RCNN则通过proposal_target_layer选择样本,进行分类和边界框回归。博主强调,理解这些概念的重要性在于亲手实践和自我领悟。
摘要由CSDN通过智能技术生成

损失函数分为框预测回归和分类loss,每个都分为rpn和rcnn。

rpn损失:

_anchor_target_layer 给图像内部的anchors分配rpn_labels(1或0,前景或背景),再和rpn_cls_score做交叉熵,此时只关注物体是前景/背景,不管物体的类别

rpn_cross_entropy = tf.reduce_mean(
        tf.nn.sparse_softmax_cross_entropy_with_logits(logits=rpn_cls_score, labels=rpn_label))

对图像内部的框做回归 

# 计算anchor平移和放缩的幅度target,和所属的类比较
  bbox_targets = _compute_targets(anchors, gt_boxes[argmax_overlaps, :])
......
# bbox_targets
  bbox_targets = bbox_targets \
    .reshape((1, height, width, A * 4))

  rpn_bbox_targets = bbox_targets
rpn_loss_box = self._smooth_l1_loss(rpn_bbox_pred, rpn_bbox_targets, rpn_bbox_inside_weights,
                                          rpn_bbox_outside_weights, sigma=sigma_rpn, dim=[1, 2, 3])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值