** Sun, Baochen, and Kate Saenko. “Deep coral: Correlation alignment for deep domain adaptation.” ECCV. Springer, Cham, 2016. **
结构如图:
两个损失函数:
其中 L C L A S S \mathcal{L}_{CLASS} LCLASS为分类损失, L C O R A L \mathcal{L}_{CORAL} LCORAL:
C S C_S CS和 C T C_T CT为样本协方差 (二阶统计量),反映了feature map上各位置的相关性。 其中D_S矩阵的每一行代表代表一个feature map。 C S C_S CS和 C T C_T CT的行数= C S C_S CS和 C T C_T CT的列数=feature map维度。
CORAL Loss系数为0时,训练过程中CORAL distance测量值变化情况:
上图证明了CORAL Loss的有效性。
原文表明:没有CORAL Loss直接fine-tuning容易对source domain的数据过拟合。
这里复习下样本方差为无偏估计量:
S 2 = ∑ ( x i − x ˉ ) 2 n S^2= \frac{\sum (x_i - \bar{x} )^2 }{n} S2=n∑(xi−xˉ)2
证明:
E
(
s
2
)
=
1
n
−
1
E
[
∑
(
x
i
−
x
ˉ
)
2
]
=
∑
E
(
x
i
2
−
2
x
ˉ
x
i
+
x
ˉ
2
)
n
−
1
=
n
E
2
(
x
)
−
2
n
E
(
x
ˉ
2
)
+
n
E
(
x
ˉ
2
)
n
−
1
=
n
E
2
(
x
)
−
n
E
(
x
ˉ
2
)
n
−
1
=
n
E
2
(
x
)
−
n
D
(
x
ˉ
)
−
n
E
2
(
x
ˉ
)
n
−
1
=
n
E
2
(
x
)
−
n
D
(
x
ˉ
)
−
n
E
2
(
x
)
n
−
1
=
n
E
2
(
x
)
−
n
E
2
(
x
)
−
n
D
(
x
ˉ
)
n
−
1
=
n
D
(
x
)
−
n
D
(
x
)
n
n
−
1
=
D
(
x
)
\begin{aligned} E(s^2)&= \frac{1}{n-1} E[ \sum(x_i -\bar{x})^2 ] \\ &=\frac{\sum E(x_i^2-2\bar{x}x_i +\bar{x}^2 ) }{n-1} \\ &=\frac{nE^2(x)-2nE(\bar{x}^2)+nE(\bar{x}^2)}{n-1} \\ &=\frac{nE^2(x)-nE(\bar{x}^2)}{n-1} \\ &=\frac{nE^2(x)-nD(\bar{x})-nE^2(\bar{x}) }{n-1} \\ &=\frac{nE^2(x)-nD(\bar{x})-nE^2(x) }{n-1} \\ &=\frac{nE^2(x)-nE^2(x) -nD(\bar{x})}{n-1} \\ &= \frac{nD(x)-\frac{nD(x)}{n}}{n-1}\\ &=D(x) \end{aligned}
E(s2)=n−11E[∑(xi−xˉ)2]=n−1∑E(xi2−2xˉxi+xˉ2)=n−1nE2(x)−2nE(xˉ2)+nE(xˉ2)=n−1nE2(x)−nE(xˉ2)=n−1nE2(x)−nD(xˉ)−nE2(xˉ)=n−1nE2(x)−nD(xˉ)−nE2(x)=n−1nE2(x)−nE2(x)−nD(xˉ)=n−1nD(x)−nnD(x)=D(x)
注意:
E
(
x
)
≠
x
ˉ
∑
(
−
2
E
(
x
i
)
x
ˉ
)
≠
−
2
n
E
(
x
)
E
(
x
)
=
E
(
x
ˉ
)
D
(
x
ˉ
)
=
E
(
x
ˉ
2
)
−
E
2
(
x
ˉ
)
\begin{aligned} E(x) &\neq \bar{x} \\ \sum (-2E(x_i) &\bar{x}) \neq -2nE(x) \\ E(x) &= E(\bar{x}) \\ D(\bar{x})&=E(\bar{x}^2)-E^2(\bar{x}) \end{aligned}
E(x)∑(−2E(xi)E(x)D(xˉ)̸=xˉxˉ)̸=−2nE(x)=E(xˉ)=E(xˉ2)−E2(xˉ)
类似于 S 2 = ∑ ( x i − x ˉ ) 2 n S^2= \frac{\sum (x_i - \bar{x} )^2 }{n} S2=n∑(xi−xˉ)2
样本协方差 = ∑ ( x i − x ˉ ) ( y i − y ˉ ) n − 1 = ∑ x i y i − n x ˉ y ˉ n − 1 = \frac{\sum (x_i-\bar{x}) (y_i-\bar{y}) }{n-1}= \frac{ \sum x_iy_i -n \bar{x}\bar{y} }{n-1} =n−1∑(xi−xˉ)(yi−yˉ)=n−1∑xiyi−nxˉyˉ