matplotlib-论文用折线图

转载自:
作者:infinitor,地址:https://blog.csdn.net/Rivalsx/article/details/105422084
作者:拦路雨g,地址:https://blog.csdn.net/lanluyug/article/details/80002273

python+Matplotlib
最后挑来挑去,最终选用了python+Matplotlib。Matplotlib是著名Python的标配画图包,其绘图函数的名字基本上与 Matlab 的绘图函数差不多。优点是曲线精致,软件开源免费,支持Latex公式插入,且许多时候只需要一行或几行代码就能搞定。

然后小编经过了几天的摸索,找了几个不错的python代码模板,供大家简单修改就能快速上手使用。建议使用Wing Personal 作为PythonIDE,生成的图片能上下左右进行调整:
在这里插入图片描述

NO.1

# -*- coding: utf-8 -*-
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif']=['Arial']#如果要显示中文字体,则在此处设为:SimHei
plt.rcParams['axes.unicode_minus']=False#显示负号

x = np.array([3,5,7,9,11,13,15,17,19,21])
A = np.array([0.9708, 0.6429, 1, 0.8333, 0.8841, 0.5867, 0.9352, 0.8000, 0.9359, 0.9405])
B= np.array([0.9708, 0.6558, 1, 0.8095, 0.8913, 0.5950, 0.9352, 0.8000, 0.9359, 0.9419])
C=np.array([0.9657, 0.6688, 0.9855, 0.7881, 0.8667, 0.5952, 0.9361, 0.7848, 0.9244, 0.9221])
D=np.array([0.9664, 0.6701, 0.9884, 0.7929, 0.8790, 0.6072, 0.9352, 0.7920, 0.9170, 0.9254])

#label在图示(legend)中显示。若为数学公式,则最好在字符串前后添加"$"符号
#color:b:blue、g:green、r:red、c:cyan、m:magenta、y:yellow、k:black、w:white、、、
#线型:-  --   -.  :    ,
#marker:.  ,   o   v    <    *    +    1
plt.figure(figsize=(10,5))
plt.grid(linestyle = "--") #设置背景网格线为虚线
ax = plt.gca()
ax.spines['top'].set_visible(False) #去掉上边框
ax.spines['right'].set_visible(False) #去掉右边框

plt.plot(x,A,color="black",label="A algorithm",linewidth=1.5)
plt.plot(x,B,"k--",label="B algorithm",linewidth=1.5)
plt.plot(x,C,color="red",label="C algorithm",linewidth=1.5)
plt.plot(x,D,"r--",label="D algorithm",linewidth=1.5)

group_labels=['dataset1','dataset2','dataset3','dataset4','dataset5',' dataset6','dataset7','dataset8','dataset9','dataset10'] #x轴刻度的标识
plt.xticks(x,group_labels,fontsize=12,fontweight='bold') #默认字体大小为10
plt.yticks(fontsize=12,fontweight='bold')
plt.title("example",fontsize=12,fontweight='bold') #默认字体大小为12
plt.xlabel("Data sets",fontsize=13,fontweight='bold')
plt.ylabel("Accuracy",fontsize=13,fontweight='bold')
plt.xlim(3,21) #设置x轴的范围
#plt.ylim(0.5,1)

#plt.legend()          #显示各曲线的图例
plt.legend(loc=0, numpoints=1)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize=12,fontweight='bold') #设置图例字体的大小和粗细

plt.savefig('D:\\filename.png') #建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
plt.show()

效果图:
在这里插入图片描述

NO.2

# coding=utf-8

import numpy as np
import matplotlib.pyplot as plt

plt.rcParams['font.sans-serif'] = ['Arial']  # 如果要显示中文字体,则在此处设为:SimHei
plt.rcParams['axes.unicode_minus'] = False  # 显示负号

x = np.array([1, 2, 3, 4, 5, 6])
VGG_supervised = np.array([2.9749694, 3.9357018, 4.7440844, 6.482254, 8.720203, 13.687582])
VGG_unsupervised = np.array([2.1044724, 2.9757383, 3.7754183, 5.686206, 8.367847, 14.144531])
ourNetwork = np.array([2.0205495, 2.6509762, 3.1876223, 4.380781, 6.004548, 9.9298])

# label在图示(legend)中显示。若为数学公式,则最好在字符串前后添加"$"符号
# color:b:blue、g:green、r:red、c:cyan、m:magenta、y:yellow、k:black、w:white、、、
# 线型:-  --   -.  :    ,
# marker:.  ,   o   v    <    *    +    1
plt.figure(figsize=(10, 5))
plt.grid(linestyle="--")  # 设置背景网格线为虚线
ax = plt.gca()
ax.spines['top'].set_visible(False)  # 去掉上边框
ax.spines['right'].set_visible(False)  # 去掉右边框


plt.plot(x, VGG_supervised, marker='o', color="blue", label="VGG-style Supervised Network", linewidth=1.5)
plt.plot(x, VGG_unsupervised, marker='o', color="green", label="VGG-style Unsupervised Network", linewidth=1.5)
plt.plot(x, ourNetwork, marker='o', color="red", label="ShuffleNet-style Network", linewidth=1.5)

group_labels = ['Top 0-5%', 'Top 5-10%', 'Top 10-20%', 'Top 20-50%', 'Top 50-70%', ' Top 70-100%']  # x轴刻度的标识
plt.xticks(x, group_labels, fontsize=12, fontweight='bold')  # 默认字体大小为10
plt.yticks(fontsize=12, fontweight='bold')
# plt.title("example", fontsize=12, fontweight='bold')  # 默认字体大小为12
plt.xlabel("Performance Percentile", fontsize=13, fontweight='bold')
plt.ylabel("4pt-Homography RMSE", fontsize=13, fontweight='bold')
plt.xlim(0.9, 6.1)  # 设置x轴的范围
plt.ylim(1.5, 16)

# plt.legend()          #显示各曲线的图例
plt.legend(loc=0, numpoints=1)
leg = plt.gca().get_legend()
ltext = leg.get_texts()
plt.setp(ltext, fontsize=12, fontweight='bold')  # 设置图例字体的大小和粗细

plt.savefig('./filename.svg', format='svg')  # 建议保存为svg格式,再用inkscape转为矢量图emf后插入word中
plt.show()

效果图:

在这里插入图片描述

NO.3

# coding=utf-8
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
import numpy as np

figure(num=None, figsize=(2.8, 1.7), dpi=300)
#figsize的2.8和1.7指的是英寸,dpi指定图片分辨率。那么图片就是(2.8*300)*(1.7*300)像素大小
test_mean_1000S_n = [0.7,0.5,0.3,0.8,0.7,0.5,0.3,0.8,0.7,0.5,0.3,0.8,0.7,0.5,0.3,0.8,0.7,0.5,0.3,0.8]
test_mean_1000S   = [0.9,0.8,0.7,0.6,0.9,0.8,0.7,0.6,0.9,0.8,0.7,0.6,0.9,0.8,0.7,0.6,0.9,0.8,0.7,0.6]
plt.plot(test_mean_1000S_n, 'royalblue', label='without threshold')
plt.plot(test_mean_1000S, 'darkorange', label='with threshold')
#画图,并指定颜色

plt.xticks(fontproperties = 'Times New Roman', fontsize=8)
plt.yticks(np.arange(0, 1.1, 0.2), fontproperties = 'Times New Roman', fontsize=8)
#指定横纵坐标的字体以及字体大小,记住是fontsize不是size。yticks上我还用numpy指定了坐标轴的变化范围。

plt.legend(loc='lower right', prop={'family':'Times New Roman', 'size':8})
#图上的legend,记住字体是要用prop以字典形式设置的,而且字的大小是size不是fontsize,这个容易和xticks的命令弄混

plt.title('1000 samples', fontdict={'family' : 'Times New Roman', 'size':8})
#指定图上标题的字体及大小

plt.xlabel('iterations', fontdict={'family' : 'Times New Roman', 'size':8})
plt.ylabel('accuracy', fontdict={'family' : 'Times New Roman', 'size':8})
#指定横纵坐标描述的字体及大小

plt.savefig('./where-you-want-to-save.png', dpi=300, bbox_inches="tight")
#保存文件,dpi指定保存文件的分辨率
#bbox_inches="tight" 可以保存图上所有的信息,不会出现横纵坐标轴的描述存掉了的情况

plt.show()
#记住,如果你要show()的话,一定要先savefig,再show。如果你先show了,存出来的就是一张白纸。

效果图:
在这里插入图片描述

最后在放点Matplotlib相关设置供大家参考:

附颜色表
在这里插入图片描述

Marker常见参数
在这里插入图片描述
legend 位置属性 loc 使用:plt.legend(xxxx, loc = 0)
在这里插入图片描述

可以使用Python中的matplotlib库来制作折线图。首先,你需要导入matplotlib库中的pyplot模块。然后,你可以使用pyplot模块中的plot函数来绘制折线图。在plot函数中,你需要传入x轴和y轴的数据,分别表示折线图上的横坐标和纵坐标。最后,你可以使用pyplot模块中的show函数来显示绘制好的折线图。 以下是一个制作折线图的示例代码: ```python import matplotlib.pyplot as plt # 指定数据 x = \[1, 2, 3, 4, 5\] # x轴数据 y = \[10, 15, 7, 12, 9\] # y轴数据 # 绘制折线图 plt.plot(x, y) # 添加标题和标签 plt.title("折线图示例") plt.xlabel("x轴") plt.ylabel("y轴") # 显示图形 plt.show() ``` 这段代码会生成一个简单的折线图,x轴上的数据为\[1, 2, 3, 4, 5\],y轴上的数据为\[10, 15, 7, 12, 9\]。你可以根据自己的需求修改x和y的数据,以及添加标题和标签来定制你的折线图。 #### 引用[.reference_title] - *1* *2* [SCI论文绘图—Python绘图常用模板及技巧](https://blog.csdn.net/qq_43689832/article/details/122351344)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [Python之matplotlib绘制图表 折线图、柱状图、饼状图](https://blog.csdn.net/qq_52436400/article/details/130623610)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值