cycle-GAN keras

该博客介绍了如何利用Keras深度学习库实现Cycle-GAN,重点在于图像到图像转换的训练过程及其应用。
摘要由CSDN通过智能技术生成

./datasets/lane2road/trainA(B)

from keras_contrib.layers.normalization.instancenormalization import InstanceNormalization
from keras.layers import Input, Concatenate, Activation
from keras.layers.advanced_activations import LeakyReLU
from keras.layers.convolutional import UpSampling2D, Conv2D
from keras.models import Sequential, Model
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import scipy.misc
from glob import glob
import numpy as np
import os

class DataLoader():
    def __init__(self, dataset_name, img_res=(128, 128)):
        self.dataset_name = dataset_name
        self.img_res = img_res

    def load_batch(self, batch_size=1, is_testing=False):
        data_type = "train"
        path_A = glob('./datasets/%s/%sA/*' % (self.dataset_name, data_type))
        path_B = glob('./datasets/%s/%sB/*' % (self.dataset_name, data_type))
        self.n_batches = int(min(len(path_A), len(path_B)) / batch_size)
        total_samples = self.n_batches * batch_size
        path_A = np.random.choice(path_A, total_samples, replace=False)
        path_B = np.random.choice(path_B, total_samples, replace=False)
        for i in range(self.n_batches-1):
            batch_A = path_A[i*batch_size:(i+1)*batch_size]
            batch_B = path_B[i*batch_size:(i+1)*batch_size]
            imgs_A, imgs_B = [], []
            for img_A, img_B in zip(batch_A, batch_B):
                img_A = scipy.misc.imread(img_A, mode='RGB').astype(np.float)
                img_B = scipy.misc.imread(img_B, mode='RGB').astype(np.float)
                i
在R语言中实现CycleGAN并不是直接内置的,因为R主要用于统计分析而非深度学习框架。不过你可以利用一些开源库如`keras` (如果已经安装了`reticulate`支持Python调用) 或者 `tensorflow` (如果安装了`reticulate`支持TensorFlow调用) 来间接实现,因为它们支持训练像CycleGAN这样的模型。以下是基本步骤: 1. 安装必要的包:首先需要安装`reticulate`以允许R与Python交互,并可能需要`keras`和相关的深度学习库。 ```R install.packages("reticulate") if (!requireNamespace("keras", quietly = TRUE)) { install.packages("keras", repos = "https://cran.rstudio.com/") } ``` 2. 调用Python环境并加载预训练模型或自定义训练:使用`reticulate::py_eval()`函数导入并初始化Python库,然后导入CycleGAN库(如`tensorflow-gan`或`pytorch-generative-models`)进行模型构建和训练。 3. 实现数据准备:读取和预处理输入图像数据,将其转化为适合模型训练的数据格式。 4. 编写训练脚本:编写包含训练循环、损失函数计算以及优化器更新的Python代码,通常涉及到定义生成器、判别器、损失函数等关键组件。 5. 训练模型:在Python环境中调用训练函数,保存模型权重以便后续使用。 6. 验证和评估:完成训练后,在R中可能需要使用`reticulate`将模型预测结果带回R环境进行查看或进一步分析。 请注意,这只是一个概括的过程,实际操作可能涉及较多的调试和配置工作。如果你是R用户,可能会更适合寻找R专有的图像转换库,如`imager`或`magick`,它们可能提供特定于R的解决方案。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值