研究分享|基于检索增强生成(RAG)的建筑设计知识系统构建研究

本文是2024年全国建筑院系建筑数字技术教学与研究学术研讨会议论文《基于检索增强生成(RAG)的建筑设计知识系统构建研究》(Research on the Construction of an Architectural Design Knowledge System Based on Retrieval-Augmented Generation)的研究分享。

1、研究背景

在传统建筑设计过程中,建筑师需要投入大量时间进行知识检索、知识理解以及知识融合,这增大了建筑师的设计工作难度,并大大降低了设计效率,甚至可能影响设计质量。随着人工智能技术的快速发展,建筑设计领域亦开始探索利用 AI 技术来提升设计效率和质量的方法。2022 年以来,生成式大模型在知识理解和生成方面实现了重大突破,目前已成为知识问答系统研究领域的一个重要方向,也为探索建筑行业多源知识的高效存储与检索方法提供了新的可能性。

2、研究内容及意义

研究内容: 研究旨在构建一个基于检索增强生成(RAG)技术的建筑设计知识系统,实现对建筑设计知识的高效管理和智能应用。首先回顾检索增强生成技术的运作机制,其次对建筑设计知识深入分析,探讨了建筑设计知识数据与技术的适配模式,最终,提出一个基于检索增强生成的建筑设计知识系统方案。

研究意义: 该方案可降低建筑师检索和理解大量碎片化设计知识的难度,并更便捷地应用设计知识进行方案设计,提升设计工作的效率、品质及决策的科学性。

3、知识系统的发展历程

人类始终致力于追求更高效、更精确的知识获取方式,这是社会生产活动中至关重要的环节。自 20 世纪60 年代计算机科学兴起以来,人工智能技术的飞速发展为知识获取开辟了新的途径。知识获取方式伴随技术的不断革新经历了从早期的专家系统,到互联网时代的联网搜索,直至当前基于生成式大模型的人工智能问答系统的多个阶段。

建筑设计作为依赖于建筑知识的社会活动,建筑师早在 20 世纪 70-80 年代专家系统发展时,就开始了对建筑知识系统的研究。建筑设计知识系统是面向建筑师、建筑科研者及其他建筑设计相关人员的建筑设计知识查询问答系统,是建筑设计知识的获取方式、处理方法与知识数据的集合,是辅助建筑师快速获取建筑设计所需知识的模式。

4、检索增强(RAG)机制

检索增强生成最早提出于 2020 年,是一种融合信息检索技术的大语言模型应用技术。检索增强生成技术为大语言模型的“幻觉”、知识更新滞后、推理过程不可溯源等问题提供了一种可靠的解决方案。常见的检索增强生成技术框架主要由检索器和生成器两个部分组成。目前,检索增强生成已成为大语言模型在专业领域应用的主要方法。

检索增强技术的检索器主要包含文本嵌入、检索、重排序等技术。文本嵌入是将自然语言的文本通过嵌入模型转化为向量数据,从而使得两个文本在向量空间中可以计算相似度。检索则包括向量检索、关键词检索、知识图谱检索等多种方式,其目的是找到与用户问题最为相关的文本知识。重排序则是将用户检索得到的文本块,与用户的问题之间进行相似度计算,进而找到与用户问题较为相关的文本块做为检索器的输出。

检索增强技术的生成器是大语言模型。生成器通过输入用户的问题以及检索器检索得到的文本,依靠大语言模型自身的知识理解与问题处理能力,从输入的文本中寻找用户问题的答案,并将所找到的内容进行融合形成最后的输出。其中如何选取与任务适配的大语言模型、组织检索器输出的文本、撰写生成器的提示词,并将检索的内容来源与生成内容建立映射关系是生成器的重要部分。

检索增强生成因其具有较强可解释性,是大语言模 型在工业生产中的重要方式。而在建筑设计领域,检索 增强生成方法还没有得到很好的应用与推广,其核心在 于缺乏建筑设计知识与检索增强机制的有效融合。

5、建筑知识特性分类

建筑设计知识是指在建筑设计过程中,辅助建筑师进行建筑创作的合理信息。其主要由文本构成,也涵括了高度凝练文本内容的数学公式、图像、视频及语音信息。在建筑设计知识的处理过程中,数学公式、图像、视频、语音信息亦可通过多模态大模型生成摘要的方式,转化为文本类型的信息进行存储及管理召回,故本研究仅针对于建筑的文本知识进行研究。为方便建筑设计文本知识处理,根据知识表示特征以及在建筑设计中的应用方式,笔者将其分为以下三种类型。

(1)具有映射关系的建筑知识。 建筑设计中一些数据指标具有较强的映射关系,其可通过查表或有明确的公式进行计算。该类知识常存储于建筑设计的规范文件之中,在建筑设计的定量分析阶段尤为重要。

(2)具有逻辑联系的建筑知识。 这类知识以建筑空间布局知识为代表,具有极强的内在逻辑联系。建筑空间布局蕴含着空间与功能及空间组织模式的内在逻辑联系,是建筑设计过程中的重要指引。

(3)具有复杂结构的建筑知识。 建筑设计作为人文、艺术、美学与技术的结合,包含了大量复杂的建筑设计知识,这些知识涵盖多个专业领域,包括理论研究、实践经验、案例回顾等多个方面;这一类知识往往依托于期刊论文、学位论文、研究报告、专业书籍等多种形式记录与传播,其不遵循统一的结构和写作方式,对这一类复杂结构的建筑知识的掌握与理解往往体现出建筑师设计的水准,也是资深建筑设计师与建筑设计新人的重要区分。

6、建筑知识与 RAG 检索模式的匹配

检索增强生成的核心要点在于知识的检索方式,不同的知识结构、知识特征、知识时效对应着不同的知识的检索模式。常见的知识检索模式包括基于向量数据库的检索模式、基于关键词的检索模式、基于知识图谱的检索模式以及基于网络的检索模式。根据实验研究,笔者认为其有以下适配关系。

(1)具有映射关系的建筑知识,适配基于关键词的检索模式。 关键词检索是将问题拆分为关键词组,通过匹配数据库中含有关键词的词条信息,进行数据的召回。建筑设计规范等数据中,涵括一些房间名称及专有名词,适宜通过该种方式进行精确的检索召回。

(2)具有逻辑联系的建筑知识,适配基于知识图谱的检索模式。 基于知识图谱的检索是通过查询节点获取到节点和边的关系信息。对于建筑设计知识而言,可采用大语言模型辅助构建知识图谱,节点是房间、设备名称等实体,边则蕴含着房间与房间之间的关系。通过知识图谱的构建,可获取到具有内在逻辑联系的建筑知识信息,对与检索建筑平面功能布局等具备知识内在逻辑联系的问题具有好效果。

(3)具有复杂结构的建筑知识,适配基于向量数据库的检索模式。 基于向量数据库的检索模式是将建筑知识利用嵌入模型转化为向量编码,将文本的语义信息映射到向量空间之中。在检索过程中,使用相同的嵌入模型将用户问题进行向量编码,将问题向量与向量数据库中的已有知识向量进行相关性比对,查询出多个较相关的知识,作为知识检索的备选答案。

(4)具有时效性及数据库中缺失的建筑知识,适配基于网络搜索的检索模式。 建筑设计的不同项目中,项目背景等大量信息需要依赖于网络搜索,并且有一些信息的时效性也需要得到保证。为保障网络获取信息与用户问题的相关性,需将网络搜索结果进行解析,并将搜索的数据进行分块向量编码,最后将所分块的向量编码与用户问题的向量编码进行相似度计算,获取分数大于某一阈值的文本块作为检索的输出。

通过对建筑知识与检索模式进行匹配,可对不同的建筑设计知识采取不同的检索方案;对于综合性的建筑知识需求,亦可混合采用多种检索方案,实现建筑知识与检索增强生成的有机融合。

7、基于RAG的建筑设计知识系统

基于检索增强的建筑设计知识系统主要由意图识别、分类检索、答案生成三个阶段构成。

(1)意图识别阶段: 主要解决用户输入不明确、复杂度高的问题。使用大语言模型结合提示词工程将复杂问题拆解为单一子问题。

(2)分类检索阶段: 使用与子问题匹配的检索模式进行多路检索。针对不同的问题形式,匹配相应的知识检索方案得到检索信息。

(3)答案生成阶段: 在多路检索后对所检索信息进行重排序,选取相关性较强的信息构造查询的提示词,获得精确且高效的回答。

通过意图识别、分类检索、答案生成三个主要阶段的构建,建筑设计知识系统能够融合生成高效率、高质量、广范围的知识结果,显著提升了建筑师的知识查询效率,提高了建筑师的知识查询广度,为建筑师查询建筑设计相关知识提供了新的方案。

8、综合医院门诊建筑设计知识系统构建

医疗建筑设计因其专业性和复杂性,是建筑设计中最具挑战性的类型之一,也是建筑设计知识最为复杂的类型之一。笔者聚焦于综合医院门诊建筑,收集了相关期刊论文 200 篇、学位论文 134 篇以及相关的规范及资料集,构建了综合医院门诊部文献资料库;依照建筑知识特性进行知识分类,分别存储于 Milvus 向量数据库、ES 数据库和 Neo4j 图数据库之中,并整合了网页搜索功能;采用 bge small zh v1.5 作为向量嵌入模型,采用 bge rerank base 作为重排序模型;通过调用 Kimi、文心一言、DeepSeek 等大模型接口,构建了综合医院门诊建筑设计知识系统。

综合医院门诊建筑设计知识系统能够快速且高效的检索出带有知识来源的相关问题,提高了建筑师在设计过程中的知识查询效率与广度;但目前所构建的知识系统中,知识数据均采用自动分块,导致数据清洗阶段仍存在不足;数据抽取过程中,论文的图表等相关信息丢失,造成数据不完善;多路搜索及大模型查询效率较低,在往后工作中需进一步优化。

9、结语

在以大模型为主导的生成式人工智能时代背景下,基于建筑设计的知识特性,综合运用大模型的知识理解、融合、生成能力,进行建筑知识系统构建探索丰富了建筑知识的理论及应用研究。与传统建筑师知识获取方法相比,本研究提出的系统能够准确识别并处理建筑师提出的复杂问题,整合分散的建筑知识,实现多源数据的高效协同检索,以更易于理解的方式呈现给建筑师,提高建筑师知识获取的效率。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值