写了一半不想写了,看这个 https://github.com/ytusdc/TensorRT-NMS-YOLO, utils/export.py 吧
先来一段摘抄自网上的TensorRT介绍:
TensorRT是英伟达针对自家平台做的加速包,TensorRT主要做了这么两件事情,来提升模型的运行速度。
- TensorRT支持INT8和FP16的计算。深度学习网络在训练时,通常使用 32 位或 16 位数据。TensorRT则在网络的推理时选用不这么高的精度,达到加速推断的目的。
- TensorRT对于网络结构进行了重构,把一些能够合并的运算合并在了一起,针对GPU的特性做了优化。现在大多数深度学习框架是没有针对GPU做过性能优化的,而英伟达,GPU的生产者和搬运工,自然就推出了针对自己GPU的加速工具TensorRT。一个深度学习模型,在没有优化的情况下,比如一个卷积层、一个偏置层和一个reload层,这三层是需要调用三次cuDNN对应的API,但实际上这三层的实现完全是可以合并到一起的,TensorRT会对一些可以合并网络进行合并。我们通过一个典型的inception block来看一看这样的合并运算。
TensorRT用来做模型的推理优化,也是有Python接口的,实际使用测试下来,python接口的模型推理速度C++基本差不多的。这里较为详细的记录TensorRT python接口从环境的配置到模型的转换,再到推理过程,还有模型的INT8量化,有时间的话也一并总结记录了,笔者使用的版本是TensorRT7.0版本,此版本支持模型动态尺寸的前向推理,下面也会分为静态推理和动态推理来介绍。
3.3.1 builder介绍
builder功能之一是搜索cuda内核目录,找到最快的cuda以求获得最快的实现,因此有必要使用相同的GPU进行构建(相同的操作,算子进行融合,减少IO操作),engine就是在此基础上运行的,builder还可以控制网络以什么精度运行(FP32,FP16,INT8),还有两个特别重要的属性是最大批处理大小和最大工作空间大小。
安装完 tensorRT后, pip安装pycuda
pip install pycuda
TensorRT 模型转换
简单来说就是用tensorrt的语言来构建模型,如果自己构建的话,主要是灵活但是工作量so large,一般还是用tensorrt parser来构建。自己将wts放入自己构建的模型中,工作量so large,但是很灵活。博主用的ONNXparser来构建engine的,下面就介绍以下ONNX构建engine
1、创建logger:日志记录器
要创建构建器,您需要首先创建一个记录器,为tensorrt实现日志报错接口方便报错。 TensorRT中包含一个简单的日志记录器与Python绑定。包括一个简单的记录器实现,它将高于特定严重性的所有消息记录到stdout
。在下面的代码我们只允许警告和错误消息才打印
logger = trt.Logger(trt.Logger.WARNING)
2、构建一个序列构建器
build a serialized network from scratch
builder = trt.Builder(logger)
3、构建一个空的网络计算图
Creating a Network Definition in Python
创建构建器后,优化模型的第一步是创建网络定义,
network_flags = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
self.network = builder.create_network(network_flags)
设置网络读取的 flag, EXPLICIT_BATCH 相较于 IMPLICIT_BATCH 模式,会显示的将 batch 的维度包含在张量维度当中, 有了 batch大小的,我们就可以进行一些必须包含 batch 大小的操作了,如 Layer Normalization。 不然在推理阶段,应当指定推理的 batch 的大小。目前主流的使用的 EXPLICIT_BATCH 模式
为了使用 ONNX 解析器导入模型,需要EXPLICIT_BATCH
标志。有关详细信息,请参阅显式与隐式批处理部分。
4、创建一个构建配置
create BuidlerConfig to set meta data of the network
指定 TensorRT 应该如何优化模型:
config = builder.create_builder_config()
这个接口有很多属性,你可以设置这些属性来控制 TensorRT 如何优化网络。一个重要的属性是最大工作空间大小。层实现通常需要一个临时工作空间,并且此参数限制了网络中任何层可以使用的最大大小。如果提供的工作空间不足,TensorRT 可能无法找到层的实现:
set workspace for the optimization process (default value is total GPU memory)
变换:
2^30 = 1<<30 = 1G
1<<20:1M
config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, 1 << 30)
4.1.2. Importing a Model using the ONNX Parser
现在,需要从 ONNX 表示中填充网络定义。您可以创建一个 ONNX 解析器来填充网络,如下所示:
将空的网络计算图和相应的 logger 设置装载进一个 解析器里面
parser = trt.OnnxParser(network, logger)
with open(onnx_path, "rb") as f_r:
parser_flag = parser.parse(f_r.read())
if not parser_flag:
print(f"ERROR: Failed to parse the ONNX file: {onnx_path}")
for error in range(parser.num_errors):
# 出错了,将相关错误的地方打印出来,进行可视化处理
print(parser.num_errors)
print(parser.get_error(error))
# sys.exit(1)
return None
指定配置后,可以使用以下命令构建和序列化引擎:
serialized_engine = builder.build_serialized_network(network, config)
将引擎保存到文件以供将来使用可能很有用。你可以这样做:
with open(“sample.engine”, “wb”) as f:
f.write(serialized_engine)
https://blog.51cto.com/u_16099272/10992508
https://zhuanlan.zhihu.com/p/645010134
6. TensorRT 进阶用法 - NVIDIA 技术博客
TensorRT_Plugin:手写Plugin详细步骤教程_tensorrt plugin-CSDN博客
TensorRT教程15:使用Python API 添加自定义插件层_python trt插件如何使用-CSDN博客
从0实现->训练pytorch模型->转onnx->tensorrt模型序列化->Tensorrt推理_torch .th转 onnx-CSDN博客
TensorRT的Python接口解析_tensorrt10.0.0中executev2-CSDN博客
yolov5 C++部署学习笔记_nvinfer1::iscalelayer* addbatchnorm2d(nvinfer1::in-CSDN博客
较为详细的记录总结TensorRT的python接口的使用,环境配置,模型转换和静态动态模型推理_pycuda 调用tensorrt-CSDN博客