cuda core和sp

笔者最近在常常去的一个论坛里看到这么一个帖子,发贴的标题叫做:现在GTX470有没有性价比?而帖子的内容则是短短的几个字:CUDA比460多,位宽也比460多。

笔者纳闷不已,什么时候,CUDA可以用多和少来计算了?看来NVIDIA的CUDA Core、SP、CUDA已经搞晕了不少同学,看来再度的普及还是很有必要的。

SP就是显卡中的流处理器

对于显卡来说,它的参数可以说其复杂程度已经超过处理器了。尤其对于刚入门的用户来说,想要看懂显卡的参数可是要花上一些功夫的。在NVIDIA显卡中,SP、SM、CUDA等等一系列的英文实在让人看得头晕。尤其是在NVIDIA推出了Fermi架构的显卡核心后,又出现了一种叫做“CUDA Core”的东东,这个CUDA Core究竟是什么?它和CUDA或者之前的流处理器又有什么不同呢?

为此先来说说流处理器吧。流处理器的英文叫做Stream Processor,因此可以被简写成“SP”,比如常常看到的32 SP指的就是该显卡具备了32个流处理器。如果把显卡核心看成一个军团,那么流处理器就是其中的“师”,如果有32个流处理器,那么这个军团就有32个师,师的数量越多,当然战斗力就越强大。换句话来说,显卡的流处理器越多,那么性能也就越强大。

CUDA Core与SP到底有什么区别图片1

●NVIDIA从GForce8系列显卡开始,引入了流处理器这个架构
CUDA Core就是流处理器

只是名字不同而已

那么CUDA Core又是什么呢?其实这是NVIDIA在推出全新的Fermi架构后才出现的一个名词。简单的来说,CUDA Core就是上节所说的流处理器,类似的东西只是名字上的叫法不同而已。不过在架构上,CUDA Core和流处理器还是有所区别的。其中最大的差异在于数量结构上。继续说回流处理器,比方说在先前的流处理器架构中,每个师有8个旅,而在CUDA Core架构中,每个师则是有32个旅。很显然虽然同样都是1个师,但是理论上CUDA Core架构中的实际性能要比流处理器强上4倍。

以上也只是CUDA Core和流处理器最大的区别之一,当然还有很多其它的不同之处,不过鉴于太复杂了,因此改天再有机会单独的说说吧。

CUDA Core与SP到底有什么区别图片2

●在Fermi架构中,NVIDIA用CUDA Core代替了之前的流处理器
CUDA是技术,可以用来寻找外星人
最后再来说说NVIDIA显卡中的CUDA。CUDA和CUDA Core没有任何关系,前者指是NVIDIA的一项名字叫做“通用计算”的技术,它是利用显卡强大的浮点运算能力,从而大幅提升计算机的浮点运算性能。比如用户可以利用CUDA技术,对图像和视频编辑、计算生物学和计算化学、流体力学模拟、CT图像重组、地震分析、光线追踪等超级复杂的计算。由此可见CUDA是一项技术,而这项技术是不以个数为论的。就像32寸的液晶显示器和46寸的液晶显示器,你总不能说32寸的液晶比46寸的多吧。

CUDA Core与SP到底有什么区别图片3

●CUDA是一项技术,可以用来加速科学计算,比如蛋白质折叠计算、寻找外星人等等等等

### A100 GPU V100 GPU 的规格与性能对比 #### 硬件架构差异 NVIDIA A100 GPU 基于最新的 Ampere 架构,而 NVIDIA V100 则基于 Volta 架构。Ampere 架构引入了第三代 Tensor Cores 支持 FP64、FP32、TF32、BFLOAT16 及 INT8 数据类型运算[^1]。 #### 性能指标对比 - **Tensor Core 功能** - A100 提供增强版 Tensor Cores 能够处理更广泛的数据精度组合,在机器学习工作负载下提供更高的灵活性效率。 - **显存带宽** - A100 配备有更大的 HBM2 显存容量 (最高可达 80GB),以及显著提升的显存带宽(1.6TB/s 对比 V100 的 900GB/s)[^1]。 - **计算能力** - A100 单精度浮点数(Single Precision, SP)峰值算力达到 19.5 TFLOPS;双精度(Double Precision, DP)则为 9.7 TFLOPS; - 同样条件下 V100 的单精度浮点数(SP)峰值算力约为 15.7 TFLOPS;双精度(DP)约 7.8 TFLOPS。 - **功耗表现** - 尽管 A100 在多个方面都优于前代产品,但其 TDP(Total Design Power)也相应增加到了 300W 左右,相比之下 V100 是 250W。 #### 实际应用场景中的优势体现 对于特定类型的神经网络模型如卷积神经网络(ConvNeXt),当采用优化后的数据格式(例如 TF32)及时序结构时,可以在相同硬件平台上获得接近 50% 的额外吞吐量增益。 ```python # 示例代码展示如何查询GPU信息 import torch def get_gpu_info(): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print(f'Device name: {torch.cuda.get_device_name(device)}') print(f'Memory usage:') print(f'Allocated: {round(torch.cuda.memory_allocated(0)/1024**3,1)} GB') print(f'Cached: {round(torch.cuda.memory_reserved(0)/1024**3,1)} GB') get_gpu_info() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值