L1正则化. 优点:输出具有稀疏性,即产生一个 稀疏模型 ,进而可以用于特征选择;一定程度上,L1也可以防止过拟合. 缺点:但在非稀疏情况下计算效率低.
L2正则化 :. 优点:计算效率高(因为存在解析解);可以防止模型 过拟合 (overfitting). 缺点:非稀疏输出;无特征选择. 稀疏模型和特征选择 :如果特征符合稀疏性,说明特征矩阵很多元素为0,只有少数元素是非零的矩阵,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。. 这就是稀疏模型与特征选择的关系。.
参考: www.cnblogs.com/LXP-Never/p/10918704.html