VM——坐标转换

1、参考帮助文档中“坐标转换”说明,可以用于根据小图中的坐标信息得到原来大图中对应的坐标信息。注意,此模块是将单点坐标进行转换,如果是要转换Rect,就要结合其他模块了。

2、需求:使用了“拷贝填充”提取一块图像,用于图像分割和blob分析 。然后需要将blob分析结果显示在整幅图像的对应位置上。

3、方法:如下图,注意设置“几何创建2”、坐标转换1、几何创建3、图形收集1

(1)使用“几何创建2”模块将blob分析区域ROI显性化,而不是利用“拷贝填充”内部ROIÿ

### 如何在 Origin 中创建带标签的热力图 要在 Origin 中创建带标签的热力图,可以按照以下方式操作: #### 数据准备 确保数据是以矩阵形式存在的。如果原始数据不是矩阵格式,则需要先将其转换为矩阵格式[^1]。 #### 创建热点图模板 (Template) 通过 `Plot -> Contour: Heatmap` 来创建初始的热点图。这一步会生成一个基本的热力图框架。 #### 添加坐标刻度 如果发现使用模板后无法显示坐标刻度,可能是由于 scale 设置错误。解决办法如下: - 找到 Axis 下的 Major Ticks 配置项。 - 将其设置改为 Custom Positions,并指定对应的 VM 值(如 VM2 或 VM3),以匹配当前使用的表格名称。 #### 调整 X 和 Y 标题位置 为了优化图表布局,可调整 X 和 Y 轴标题的位置: - 使用菜单栏中的 `Format -> Axis Titles -> X Title/Y Title -> Position` 进行微调。 #### 更新数据后的处理 当更新数据后,可能会遇到坐标轴范围未同步刷新的情况。此时只需按下快捷键 `Ctrl-R` 即可强制重新渲染图形并更新坐标轴范围。 #### 绘制带标签的热力图 对于更高级的需求——即希望直接在单元格上标注具体数值,在 Origin 中目前尚无内置功能支持完全自动化实现此效果。不过可以通过以下变通方案完成: 1. **手动编辑**:双击目标区域进入编辑模式,逐一手动输入相应数值作为标记; 2. **借助第三方工具补充细节**:例如导出图像至其他软件(如 Adobe Illustrator 或 Inkscape)进一步完善; 3. **编程辅助**:利用 Python 结合 Matplotlib 库绘制类似的带标签热力图[^2][^3]。以下是基于 Python 的代码示例: ```python import numpy as np import matplotlib.pyplot as plt # 构造模拟数据 data = np.random.rand(5, 5) # 初始化画布 fig, ax = plt.subplots() im = ax.imshow(data, cmap='viridis') # 显示网格上的数值标签 for i in range(len(data)): for j in range(len(data[i])): text = ax.text(j, i, f"{data[i][j]:.2f}", ha="center", va="center", color="w") # 添加颜色条 plt.colorbar(im) plt.show() ``` 上述脚本能够生成一张带有精确数值标注的热力图,其中每个方块中心都会展示该处的数据值。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值