自然常数e相关数列收敛

证明 {(1+1n)n} 收敛,只需证明此数列单调增加,且有上界即可。

a>b>0 时,有

an+1bn+1=(ab)(an+an1b+...+abn1+bn)
<(n+1)(ab)an <script type="math/tex" id="MathJax-Element-4"><(n+1)(a-b)a^n</script>

也即
an[(n+1)bna]<bn+1

a=1+1n,b=1+1n+1 代入上式可得
(1+1n)n<(1+1n+1)n+1

故数列是单调增加的。
a=1+12n,b=1 代回式子可得
(1+12n)2n<4 ,由此可得数列有上限,也即上限小于4。故可得此数列收敛。记作

limn+(1+1n)n=e


下面证明

limx(1+1x)x=e

1、对于 x+ 的情形
xnN ,使得 nx<n+1 ,故有 1+1n+1<1+1x1+1n (1+1n+1)n<(1+1x)x<(1+1n)n+1 ,也即

(1+1n+1)n+11+1n+1<(1+1x)x<(1+1n)n(1+1n)

对上式求极限,并使用夹逼定理可得
limx+(1+1x)x=e

2、对于 x 的情形
若令 x=(t+1) ,则 x 时, t+ ,故

limx(1+1x)x=limt+(tt+1)(t+1)=limt+(1+1t)t+1=limt+(1+1t)t(1+1t)=e

因此故得证:

limx(1+1x)x=e

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值