证明 {(1+1n)n} 收敛,只需证明此数列单调增加,且有上界即可。
当 a>b>0 时,有
an+1−bn+1=(a−b)(an+an−1b+...+abn−1+bn)
<(n+1)(a−b)an
<script type="math/tex" id="MathJax-Element-4"><(n+1)(a-b)a^n</script>
也即
an[(n+1)b−na]<bn+1
取
a=1+1n,b=1+1n+1
代入上式可得
(1+1n)n<(1+1n+1)n+1
故数列是单调增加的。
取
a=1+12n,b=1
代回式子可得
(1+12n)2n<4
,由此可得数列有上限,也即上限小于4。故可得此数列收敛。记作
下面证明
1、对于
x→+∞
的情形
∀x,∃n∈N
,使得
n⩽x<n+1
,故有
1+1n+1<1+1x⩽1+1n
及
(1+1n+1)n<(1+1x)x<(1+1n)n+1
,也即
对上式求极限,并使用夹逼定理可得
2、对于
x→−∞
的情形
若令
x=−(t+1)
,则
x→−∞
时,
t→+∞
,故
因此故得证: