如果{Eₙ}都是可测集,且他们处处收敛于E. 那么E也是可测集.

NOTE: 所谓集合的处处收敛,是说得他们的特征函数处处收敛.

证明:

  1. 首先, 定义在 E E E 上的可测函数序列,如果几乎处处收敛收敛于一个函数 f f f, 则这个函数 f f f也是可测函数。
  2. 由1可得 E E E的特征函数也是可测的。
  3. 其次, 一个集合的特征函数可测的充要条件是集合本身可测。
  4. 那么根据2和3可得。 E E E的特征函数既然是可测的那么, E E E也是可测的。

本证明是一个简要的证明。用到了两个结论。 这两个结论这里没有直接给出。因为如果给出这两个结论的证明就需要更多篇幅。 不利于做简要证明。 其中1和3需要读者自行查找资料证明。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值