1分钟搞定 数学的法向量 非常实用 ,高考数学必备

之前11年写过一篇关于求数学的法向量的快速求法,现在给大家分享出来,高考的童鞋可以用到


 

 我不想说神马废话,所以就直接进入主题。

  我们都知道的,高考中立体几何必不可少,我们一般用的办法       空间向量法    因此,求法向量这步一般是必不可少。

  第一步,我们都知道  建立坐标,接下来当然是写坐标点。

  第二步,写出向量。 这步是第一个你必须记住的。  给你举个例子吧,你就明白了 。向量AB =(1,2,3) 向量AC=(4,5,6)   你发现了吧,这步中要引起注意的就是 必须是从一个点发出的两向量。就像上面的 向量AB   向量 AC 

  第三步,我们继续用这个例子。那么现在就可以得出这个平面ABC的法向量了。  我们把这2个向量上下写开                                                                                       向量AB=(1,2,3)                                                               

                                                                                          向量AC=( 4,5,6)                                                                      

          那么我们现在就可以得出结论了  这个平面ABC的法向量就是 看清楚了【2 ×6-3×5,-(1×6-3×4),1×5-2×4】 结果也就是                   (-3,6,-3)咱们现在可以代进去试试 :1×-3+2×6+3×-3  是不是0  说明这个法向量是正确的。 我不知道你是不是真的看懂了。下面我还是在详细说下最后一个过程:  

                           求第一个数时,用手捂住第一个数,然后用斜对角相减;第二个数也是一样,用手捂住第二个数,不过要在求的数前面加个负    第三 个数和第一个一模一样用手捂住第三个数,然后斜对角相减。

                          我不知道你现在明白了。我们现在再举个例子:

                向量MA=(8,5,1)

                向量MB=(6 ,7 , 3)      那么我们现在就可以得结论了 平面MAB的法向量就是【5×3-1×7,-(8×3-1×6),8×7-5×6】也就是                          (8,-18,26)          现在你可以检验一下这个结果的正确性:8×8-5×18+26×1      结果是不是0

                也许你现在想问,高考是否允许,我告诉你绝对没问题的。 不过为了防止各位的粗心,我觉得求出的结果要代进去试试,一定要保证正确。需要注意的我已经用红色标出了,其实就2点,一点就是一定是从同一个点发出的2向量,在一个就是中间的数记得加负号。

   现在我还想阐述一个问题,就是关于面面夹角余弦值的计算.如求解关于Q--BP--C的面面夹角   你可以直接计算  向量BP=             向量BC=       向量BQ=         用上面的方法计算面的夹角   得出法向量后 计算余弦值即为所要的答案        

  我再强调一下 记住一定是面面公共边的任意一个起点为每个向量的起点  你现在可以做一下2011的高考卷 了    很快的     这有个辽宁的高考题18




评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值