之前11年写过一篇关于求数学的法向量的快速求法,现在给大家分享出来,高考的童鞋可以用到
我不想说神马废话,所以就直接进入主题。 我们都知道的,高考中立体几何必不可少,我们一般用的办法 空间向量法 因此,求法向量这步一般是必不可少。 第一步,我们都知道 建立坐标,接下来当然是写坐标点。 第二步,写出向量。 这步是第一个你必须记住的。 给你举个例子吧,你就明白了 。向量AB =(1,2,3) 向量AC=(4,5,6) 你发现了吧,这步中要引起注意的就是 必须是从一个点发出的两向量。就像上面的 向量AB 向量 AC 第三步,我们继续用这个例子。那么现在就可以得出这个平面ABC的法向量了。 我们把这2个向量上下写开 向量AB=(1,2,3) 向量AC=( 4,5,6) 那么我们现在就可以得出结论了 这个平面ABC的法向量就是 看清楚了【2 ×6-3×5,-(1×6-3×4),1×5-2×4】 结果也就是 (-3,6,-3)咱们现在可以代进去试试 :1×-3+2×6+3×-3 是不是0 说明这个法向量是正确的。 我不知道你是不是真的看懂了。下面我还是在详细说下最后一个过程: 求第一个数时,用手捂住第一个数,然后用斜对角相减;第二个数也是一样,用手捂住第二个数,不过要在求的数前面加个负号 第三 个数和第一个一模一样用手捂住第三个数,然后斜对角相减。 我不知道你现在明白了。我们现在再举个例子: 向量MA=(8,5,1) 向量MB=(6 ,7 , 3) 那么我们现在就可以得结论了 平面MAB的法向量就是【5×3-1×7,-(8×3-1×6),8×7-5×6】也就是 (8,-18,26) 现在你可以检验一下这个结果的正确性:8×8-5×18+26×1 结果是不是0 也许你现在想问,高考是否允许,我告诉你绝对没问题的。 不过为了防止各位的粗心,我觉得求出的结果要代进去试试,一定要保证正确。需要注意的我已经用红色标出了,其实就2点,一点就是一定是从同一个点发出的2向量,在一个就是中间的数记得加负号。 现在我还想阐述一个问题,就是关于面面夹角余弦值的计算.如求解关于Q--BP--C的面面夹角 你可以直接计算 向量BP= 向量BC= 向量BQ= 用上面的方法计算面的夹角 得出法向量后 计算余弦值即为所要的答案 我再强调一下 记住一定是面面公共边的任意一个起点为每个向量的起点 你现在可以做一下2011的高考卷 了 很快的 这有个辽宁的高考题18 |