证明连续函数的一致连续性为何那么困难?

探讨了函数在闭区间上的一致连续性概念及其重要性,并对比了不同教材中对康托尔定理的证明方法。指出简洁直观的证明有助于改进微积分的教学。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      大家知道,函数f在闭区间[ab]上的一致连续性是指:对任意ε>0,必存在一个δ.>0,只要x'– x''│<δ,则必有│f(x')-f(x'')│< ε

          康托尔定理是断言:函数f在闭区间[ab]上处处连续,则必一致连续。在微积分学中,这个定理非常重要。严格地讲,微积分基本定理的证明需要用到它。但是,”十一五”国家级规划教材《高等数学》对此定理“这里不予证明”(第74页),不知为何,就这么”一提而过“。

            同样地,“十一五”国家级规划教材《数学分析》对此定理花费了两页多文字加以证明,既繁琐,又晦涩,让人不得要领。而歌德布拉特在《超实讲义》中,对该定理说:fis uniformly continuous on [a,b] if and only if x≈y, impllies f(x) ≈ F(y)。这种说法,是何等简洁,而且符合我们的直觉!

           歌德布拉特怎么给出上述定理的证明呢?讲义只有一个单词:Exercise(练习)。这个回答多么牛气啊!实际上,用反证法只需要一句话!由此可见,我们的微积分教学不改革是不行了。



评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值