【记录读论文时遇到的一些算法6】—— 谱定理 & 瑞利熵

The Spectral Theorem: 谱定理 & Rayleigh Quotients: 瑞利熵

1.谱定理

假设 A ∈ R n , n \mathbf{A} \in R^{n, n} ARn,n是一个实对称矩阵, λ i ∈ R , i = 1 , 2 , ⋯   , n \lambda_{i} \in R, i=1,2, \cdots, n λiR,i=1,2,,n A \mathbf{A} A的特征值, u i ∈ R n , i = 1 , 2 , ⋯   , n u_{i} \in R_{n}, i=1,2, \cdots, n uiRn,i=1,2,,n A \mathbf{A} A的特征向量,那么 A u i = \mathbf{A} u_{i}= Aui= λ i u i \lambda_{i} u_{i} λiui。同时,还存在一个正交矩阵 U = [ u 1 , ⋯   , u n ] U=\left[u_{1}, \cdots, u_{n}\right] U=[u1,,un] ( U U T = U U^{T}= UUT= U T U = I n U^{T} U=I_{n} UTU=In ),有:
A = U Λ U T = [ u 1 ⋯ u n ] [ λ 1 0 ⋱ 0 λ n ] [ u 1 T ⋮ u n T ] = [ λ 1 u 1 ⋯ λ n u n ] [ u 1 T ⋮ u n T ] = ∑ i = 1 n λ i u i u i T (1) \mathbf{A}=U \Lambda U^{T}=\left[\begin{array}{lll} \mathbf{u}_{1} & \cdots & \mathbf{u}_{n} \end{array}\right]\left[\begin{array}{ccc} \lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{n} \end{array}\right]\left[\begin{array}{c} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{array}\right] \\ =\left[\begin{array}{lll} \lambda_{1} \mathbf{u}_{1} & \cdots & \lambda_{n} \mathbf{u}_{n} \end{array}\right]\left[\begin{array}{c} \mathbf{u}_{1}^{T} \\ \vdots \\ \mathbf{u}_{n}^{T} \end{array}\right] \\ =\sum_{i=1}^{n} \lambda_{i} \mathbf{u}_{i} \mathbf{u}_{i}^{T} \tag{1} A=UΛUT=[u1un]λ100λnu1TunT=[λ1u1λnun]u1TunT=i=1nλiuiuiT(1)

我们有公式 A = λ 1 u 1 u 1 T + λ 2 u 2 u 2 T + ⋯ + λ n u n u n T A=\lambda_{1} \mathbf{u}_{1} \mathbf{u}_{1}^{T}+\lambda_{2} \mathbf{u}_{2} \mathbf{u}_{2}^{T}+\cdots+\lambda_{n} \mathbf{u}_{n} \mathbf{u}_{n}^{T} A=λ1u1u1T+λ2u2u2T++λnununT.

这个 A A A 的表示称为 A A A 的谱分解 (spectral decomposition), 因为它将 A A A 分解成 A A A 的谱 (特征值) 决定的小块. 每个矩阵 u j u j T \mathbf{u}_{j} \mathbf{u}_{j}^{T} ujujT 是投影矩阵(projection matrix), 对每个向量 x ∈ R n , u j u j T x = ( u j T x ) u j \mathbf{x} \in \mathbb{R}^{n}, \mathbf{u}_{j} \mathbf{u}_{j}^{T} \mathbf{x}=\left(\mathbf{u}_{j}^{T} \mathbf{x}\right) \mathbf{u}_{j} xRn,ujujTx=(ujTx)uj.

2.瑞利熵

假设 A ∈ R n , n \mathbf{A} \in R^{n, n} ARn,n是一个实对称矩阵, λ i ∈ R , i = 1 , 2 , ⋯   , n \lambda_{i} \in R, i=1,2, \cdots, n λiR,i=1,2,,n A \mathbf{A} A的特征值, u i ∈ R n , i = 1 , 2 , ⋯   , n u_{i} \in R_{n}, i=1,2, \cdots, n uiRn,i=1,2,,n A \mathbf{A} A的特征向量,那么:
λ min ⁡ ( A ) ≤ x T A x x T x ≤ λ max ⁡ ( A ) , ∀ x ≠ 0 λ max ⁡ ( A ) = max ⁡ x : ∥ x ∥ 2 = 1 x T A x λ min ⁡ ( A ) = min ⁡ x : ∥ x ∥ 2 = 1 x T A x \begin{aligned} &\lambda_{\min }(A) \leq \frac{x^{T} A x}{x^{T} x} \leq \lambda_{\max }(A), \forall x \neq 0 \\ &\lambda_{\max }(A)=\max _{x:\|x\|_{2}=1} x^{T} A x \\ &\lambda_{\min }(A)=\min _{x:\|x\|_{2}=1} x^{T} A x \end{aligned} λmin(A)xTxxTAxλmax(A),x=0λmax(A)=x:x2=1maxxTAxλmin(A)=x:x2=1minxTAx
其中最大和最小的特征值对用的特征向量分别为 x = u 1 x=u_{1} x=u1 x = u n x=u_{n} x=un

证明:

  • 利用谱定理, U U U 是正交的, Λ \Lambda Λ 是对角矩阵:
    x T A x = x T U Λ U T x = x ˉ T Λ x ˉ = ∑ i = 1 n λ i x ˉ i 2 x^{T} A x=x^{T} U \Lambda U^{T} x=\bar{x}^{T} \Lambda \bar{x}=\sum_{i=1}^{n} \lambda_{i} \bar{x}_{i}^{2} xTAx=xTUΛUTx=xˉTΛxˉ=i=1nλixˉi2
  • 很明显:
    λ min ⁡ ∑ i = 1 n x ˉ i 2 ≤ ∑ i = 1 n λ i x ˉ i 2 ≤ λ max ⁡ ∑ i = 1 n x ˉ i 2 \lambda_{\min } \sum_{i=1}^{n} \bar{x}_{i}^{2} \leq \sum_{i=1}^{n} \lambda_{i} \bar{x}_{i}^{2} \leq \lambda_{\max } \sum_{i=1}^{n} \bar{x}_{i}^{2} λmini=1nxˉi2i=1nλixˉi2λmaxi=1nxˉi2
  • 此外, 正交矩阵 U U U 无法改变任何向量的norm:
    ∑ i = 1 n x i 2 = x T x = x T U U T x = ( U T x ) T ( U T x ) = x ˉ T x ˉ = ∑ i = 1 n x ˉ i 2 \sum_{i=1}^{n} x_{i}^{2}=x^{T} x=x^{T} U U^{T} x=\left(U^{T} x\right)^{T}\left(U^{T} x\right)=\bar{x}^{T} \bar{x}=\sum_{i=1}^{n} \bar{x}_{i}^{2} i=1nxi2=xTx=xTUUTx=(UTx)T(UTx)=xˉTxˉ=i=1nxˉi2
  • 对上述的三个式子进行结合得到:
    λ min ⁡ x T x ≤ x T A x ≤ λ max ⁡ x T x \lambda_{\min } x^{T} x \leq x^{T} A x \leq \lambda_{\max } x^{T} x λminxTxxTAxλmaxxTx
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值