【点云处理之论文狂读前沿版13】—— GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature

GAPNet是一种新的点云神经网络架构,它通过集成图注意力机制到多层感知机中来学习点云的局部几何特性。GAPLayer使用注意力池化层学习每个点的注意力特征,增强网络的鲁棒性。多头机制进一步增强了结构信息的获取。实验表明,GAPNet在分类和语义部分分割任务中表现出色。
摘要由CSDN通过智能技术生成

GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud

摘要

  • 方法: 本文提出一种新的用于point cloud神经网络GAPNet,通过将graph attention mechanism嵌入到stacked Multi-Layer-Perceptron (MLP) layers中学习point cloud的局部几何表示
    1. 引入GAPLayer,通过强调邻域的不同权重学习每个点的attention features
    2. 利用multi-head mechanism,能够让GAPLayer从单独的head聚合不同的特征
    3. 在邻域中提出attention pooling layer得到local signature,用于提高网络的鲁棒性
  • 代码: TenserFlow版本

方法

X = { x i ∈ R F , i = 1 , 2 , … , N } X=\left\{x_{i} \in \mathbb{R}^{F}, i=1,2, \ldots, N\right\} X={xiRF,i=1,2,,N}为输入point cloud set,本文中, F = 3 F=3 F=3,表示坐标 ( x , y , z ) (x, y, z) (x,y,z)

GAPLayer

Local structure representation

考虑到真实应用中的point cloud数量很庞大,所以利用 k k k-nearest neighbor构造有向 graph G = ( V , E ) G=(V, E) G=(V,E),其中 V = { 1 , 2 , … , N } V=\{1,2, \ldots, N\} V={1,2,,N}表示节点, E ⊆ V × N i E \subseteq V \times N_{i} EV×Ni表示边, N i N_{i} Ni表示点 x i x_{i} xi的邻域集合。定义边特征为 y i j = ( x i − x i j ) y_{i j}=\left(x_{i}-x_{i j}\right) yij=(xixij),其中 i ∈ V , j ∈ N i i \in V, j \in N_{i} iV,jNi x i j x_{i j} xij表示 x i x_{i} xi的neighboring point x j x_{j} xj

Single-head GAPLayer

Single-head GAPLayer的结构见图2(b)。

为了给每个neighbors分配注意力,分别提出了self-attention mechanism和neighboring-attention mechanism来获得每个点到其neighbors的注意力系数,如图1所示。具体而言,self-attention mechanism通过考虑每个点的self-geometric information学习self-coefficients;neighboring-attention mechanism通过考虑neighborhood关注local-coefficients。

作为初始化的步骤,对point cloud的顶点和边进行编码,映射到更高维度的特征,输出的维度为 F F F:
x i ′ = h ( x i , θ ) y i j ′ = h ( y i j , θ ) \begin{aligned} x_{i}^{\prime} &=h\left(x_{i}, \theta\right) \\ y_{i j}^{\prime} &=h\left(y_{i j}, \theta\right) \end{aligned} xiyij=h(xi,θ)=h(yij,θ)
其中 h ( ) h() h()是一个参数化的非线性函数,在实验中被选中作为single-layer neural network , θ \theta θ是filter的可学习参数集合。

通过融合self-coefficients h ( x i ′ , θ ) h\left(x_{i}^{\prime}, \theta\right) h(xi,θ) 和 local-coefficients h ( y i j ′ , θ ) h\left(y_{i j}^{\prime}, \theta\right) h(yij,θ)得到最终的attention coefficients,其中 h ( x i ′ , θ ) h\left(x_{i}^{\prime}, \theta\right) h(xi,θ) h ( y i j ′ , θ ) h\left(y_{i j}^{\prime}, \theta\right) h(yij,θ)是输出为1维的单层的神经网络, LeakyReLU() 表示激活函数:
c i j = LeakyRe ⁡ L U ( h ( x i ′ , θ ) + h ( y i j ′ , θ ) ) c_{i j}=\operatorname{LeakyRe} L U\left(h\left(x_{i}^{\prime}, \theta\right)+h\left(y_{i j}^{\prime}, \theta\right)\right) cij=LeakyReLU(h(xi,θ)+h(yij,θ))

使用softmax对这些系数进行归一化:
α i j = exp ⁡ ( c i j ) ∑ k ∈ N i exp ⁡ ( c i k ) \alpha_{i j}=\frac{\exp \left(c_{i j}\right)}{\sum_{k \in N_{i}} \exp \left(c_{i k}\right)} αij=kNiexp(cik)exp(cij)
Single-head GAPLayer的目标就是计算每个点的ontextual attention feature。为此,利用计算得到的归一化系数更新顶点的特征 x ^ i ∈ R F ′ \hat{x}_{i} \in \mathbb{R}^{F^{\prime}} x^iRF
x ^ i = f ( ∑ j ∈ N i α i j y i j ′ ) \hat{x}_{i}=f\left(\sum_{j \in N_{i}} \alpha_{i j} y_{i j}^{\prime}\right) x^i=fjNiαijyij
其中 f ( ) f() f()是一个非线性激活函数,实验中使用RELU函数。

Multi-head mechanism

为了获得足够的结构信息和稳定的网络,我们将 M M M 个独立的single-head GAPLayers进行拼接,生成通道数为 M × F ′ M \times F^{\prime} M×F的multi-attention features:
x ^ i ′ = ∥ m M x ^ i ( m ) \hat{x}_{i}^{\prime}=\|_{m}^{M} \hat{x}_{i}^{(m)} x^i=mMx^i(m)
如图2所示,multi-head GAPLayer 的输出是multi-attention features 和multi-graph features。 x ^ i ( m ) \hat{x}_{i}^{(m)} x^i(m)是第 m m m个head的 attention feature, M M M是heads的数量, ∥ \| 表示特征通道间的拼接操作。

Attention pooling layer

为了提高网络的稳定性和提升性能,在multi-graph features的相邻通道上定义attention pooling layer:
Y i = ∥ m M max ⁡ j ∈ N i y i j ′ ( m ) Y_{i}=\|_{m}^{M} \max _{j \in N_{i}} y_{i j}^{\prime(m)} Yi=mMjNimaxyij(m)

GAPNet architecture

该结构与PointNet有3点不一样:

  1. 使用attention-aware spatial transform network使得Point cloud具有某种变换不变性
  2. 不对单个点进行处理,而是提取局部特征
  3. 使用attention pooling layer得到local signature,与中间层相连接,用于得到 global descriptor

实验

Classification

Ablation study

Semantic part segmentation

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值