深度学习基础篇: 常用的神经网络层

实战篇中,人脸识别模型的搭建看似非常复杂,其实都是由一些常用的神经网络层搭建而来,只要我们明白了这些网络层,搭建一个模型就不再困难了
神经网络搭建的方式有2种:顺序模型函数式API
计算机视觉常用的神经网络层:全连接层、二维卷积层、池化层、BN层、dropout层、flaten层
下面我们分别介绍他们

全连接层

全连接层的每一个节点都和上一层所有的节点相连,从而把之前提取到的特征综合起来。如下图所示:

  • 图中的圆圈称为神经单元
  • Layer1:称为输入层
  • layer4:称为输出层
  • Layer2、layer3:称为隐藏层
  • X 0 X_0 X0 X 1 X_1 X1 X 2 X_2 X2:为输入特征
  • a 0 a_0 a0 a 1 a_1 a1 a 2 a_2 a2:为输入值X经过激活函数后的值
  • W:为输入特征对应的权值,初始化后,通过反向传播修正它的值
  • Z : 为a与W之间点乘的结果,比如图中的 Z 1 ( 2 ) Z_1^{(2)} Z1(2) = W 1 , 0 ( 1 ) a 0 ( 1 ) W_{1,0}^{(1)}a_0^{(1)} W1,0(1)a0(1) + W 1 , 1 ( 1 ) a 1 ( 1 ) W_{1,1}^{(1)}a_1^{(1)} W1,1(1)a1(1) + W 1 , 2 ( 1 ) a 2 ( 1 ) W_{1,2}^{(1)}a_2^{(1)} W1,2(1)a2(1)
keras调用代码
Dense(units = 4,activation = 'relu')
  • units :是一个正数,表示输出空间的维度
  • activation:激活函数,默认不使用激活函数,即线性激活,输入与输出相同
  • use_bias:布尔型变量,代表该层是否使用偏置向量
  • kernel_initializer:kernel权值矩阵的初始化器
  • bias_initializer:偏置向量的初始化器
  • kernel_regularizer:运用到kernel的正则化函数
  • bias_regularizer:运用到偏置向量的正则化函数
  • activity_regularizer:运用到输出结果的正则化函数
  • kernel_constraint:运用到kernel权值矩阵的约束函数
  • bias_constraint:运用到偏置向量的约束函数
总结

其实看得出,全连接层的参数非常多,参数量也非常大,从而导致计算量非常大,早期的神经网络是只有全连接的,比如我们将一张320*320的图片传入全连接,输入层的神经单元就有102400个,而且将每一个像素当做特征值输入,也十分容易出现过拟合现象

二维卷积

在深度学习之前的人脸识别,大都采用Haar特征,Haar特征是通过不同模板来对图片进行特征提取,最后筛选出比较具有代表性的特征再使用强分类器进行分类。这个Haar特征对特征的提取方式,让我感觉像是卷积的雏形。卷积相对模块来说,它可以根据反向传播来纠正自己的“模板”中的数值,让提取特征更加有效。

工作方式

如下图:黄色的卷积核(黄色)对图片(绿色)从左到右,从上到下进行扫描并点乘,提取出右边(粉红)的特征图(feature map)。

在这里插入图片描述

特点
  • 卷积层中使用参数共享可以来控制参数的数量,因此用卷积来替代前期的全连接,参数量更少
  • 相对于全连接,可以减少过拟合现象
  • 二维卷积扫描方式有“valid”和“same”2种,“same”扫描前会填充数据,以至于扫描后的特征图长宽相对于原图不会减少
  • 卷积尺寸一般都不大,常用的有1x1、3x3、7x7、9x9,其中3X3最常用
  • 常用的集合函数是:ReLU
keras代码
kears.layers.Conv2D(filters,kernel_size,strides=(1,1),padding='valid',data_format = None,dilation_rate=(1,1),activation = None,use_bias = true,kernel_initializer = 'glorot_uniform',bias_initializer='zeros',kernel_regularizer=None,bias_regularizer=None,activity_regularizer = None,kernel_constraint=None,bias_constraint=None)
  • filters :卷积核的个数,即卷积操作后输出空间的维度
  • kernel_size:可以是整数也可以是一个元祖,表示卷积窗口的宽度和高度
  • strides:可以是一个整数也可以是一个元祖,表面卷积沿宽度和高度方向的步长,即卷积操作每一步移动的步长
  • padding:只能为“valid”或者“same”,设置图像在卷积过程中边界像素如何填充。
  • data_format:可以设置为“channels_last”(默认)或“channels_first”二者之一,表示输入中维度的顺序。
  • dilation_rate:可以是一个整数,也可以是一个元祖,指定膨胀卷积的膨胀率。
  • activation:卷积层要使用的激活函数。默认不激活,输入输出相同,即f(x) = x
  • use_bias:布尔型变量,代表该层是否使用偏置向量
  • kernel_initializer:偏置向量的初始化器
  • bias_initializer:偏置向量的初始化器
  • kernel_regularizer:运用到kernel的正则化函数
  • bias_regularizer:运用到偏置向量的正则化函数
  • activity_regularizer:运用到输出层(他的激活值)的正则化函数
  • kernel_constraint:运用到kernel权值矩阵的约束函数
  • bias_constraint:运用到偏置向量的约束函数

池化层

池化层也称为抽样层,他的扫描方式和卷积相似,计算的方式不再是扫描框与被扫描的区域点乘,池化运算方法有以下3种:

  • 均值池化:提取被扫描区域中有所值的均值
  • 随机池化:提取被扫描区域中的任意一个值
  • 最大池化:提取被扫描区域中值最大的一个(最常用的)。
优点
  • 可以压缩数据,改善结果,是神经网络不容易发生过拟合 。
  • 和卷积层一起使用,有效的减少数据量,起到了降采样的作用,相当于对卷积后进一步的特征提取与压缩。
keras代码(MaxPooling2D)
MaxPooling2D(pool_size=(2,2),strides=None,padding='valid',data_format = None)
  • pool_size:池化的窗口,可以是整数或者元祖,整数的话,表示长宽一样
  • strides:可以是整数、元祖或者None,默认值None代表与pool_size相同
  • padding:取值为为“valid”或者“same”
  • data_format:可以设置为“channels_last”(默认)或“channels_first”二者之一,表示输入中维度的顺序。“channels_first”表示颜色通道在最前面,(3,64,64)。“channels_last”则相反
    另外:平均池化:AveragePooling2D

全局池化

全局池化与普通池化的区别在于,全局池化不需要池化窗口在输入数据上进行滑动采样,也就是说池化过程的输入是前一个卷积层输出得到的特征图,

  • 包含全局平均池化、全局最大池化。
  • 全局平均池化替代全连接层,减少卷积神经网络中的参数(GoogleNet 结合了全局平均池化层,所以全连接层总参数还不到700万)
  • 替代全连接层,同时不需要dropout层
  • 全局平均池化层更有意义且容易解释其内在原理
缺点
  • 全局平均池化网络收敛速度会相对较慢
代码
keras.layers.GlobalAveragePooling2D(data_fromat=None)/GlobalMaxPooling2D(data_format=None)
  • 对输入特征的一种线性计算过程

BN层

Batch Normalization层,称为批量标准化层。这是一种优化深度学习神经网络的方式,我们常将它夹杂在各层之间,对数据进行归一化处理,比如:min-max标准化、Z-score等。

  • 对数据标准化可以提高网络的训练速度。
  • 可以解决Internal Covariate Shift现象
  • 让数据满足IID独立同分布
  • 对训练中的每一批次的数据进行处理,使其平均值接近0,标准差接近1.
Internal Covariate Shift

google称为ICS现象

深度神经网络涉及到很多层的叠加,而每一层的参数更新会导致上层的输入数据分布发生变化,通过层层叠加,高层的输入分布变化会非常剧烈,这就使得高层需要不断去重新适应底层的参数更新。为了训好模型,我们需要非常谨慎地去设定学习率、初始化权重、以及尽可能细致的参数更新策略。

IID独立同分布

IID独立同分布假设就是假设训练数据与测试数据是满足相同分布的,那么通过训练数据获得的模型能够在测试集上获得较好的效果

keras代码
keras.layers.BatchNormalization(axis=-1,momentum=0.99,epsilon=0.11,center=True,scale=True,beta_initializer='zeros',gamma_initializer='ones',moving_mean_initializer='zeros',moving_variance_initializer='ones',beta_regularizer=None,gamma_regularizer=None,beta_constraint=None,gamma_constraint=None)
  • axis:需要标准化的轴,一般是特征轴。例如在data_format='channels_first’的Conv2D层的后面。将BN层的axis参数设置为1
  • momentum:超参数,移动均值和移动方差的动量值
  • epsilon:正则化的超参数,这是一个很小的浮动数值,用以避免在除法的过程中除数为零。
  • center:如果为True,把β的偏移量加到标准化的张量上;如果为False,则忽略。
  • scale:缩放,如果为True,乘以γ;如果为False,则不使用。当下一层为线性层时。这个参数可以被禁用,因为缩放将由下一层完成
  • beta_initializer:β权重初始化方法。
  • gamma_initializer:γ权重的初始化方法。
  • moving_mean_initializer:移动均值的初始化方法。
  • moving_variance_initializer:移动方差的初始化方法。
  • beta_regularizer:可选的β权重的正则化方法。
  • gamma_regularizer:可选的γ正则化方法。
  • beta_constraint:可选的β的权重的约束方法
  • gamma_constraint:可选的γ权重的约束方法

dropout层

dropout层的作用是为了解决参数量过大带来的过拟合现象,所以的它的原理是,对每一个全连接层,按照一定的概率将其中的神经网络单元暂时从网络中随机丢弃。从而简化了神经网络结构,如下图所示:
dropout层

  • 左图是未droput的神经网络,右图是droput的神经网络
  • dropout层是随机选择丢弃的,且每次丢弃的都不一样
  • 我们可以设置丢弃的比例
  • 丢弃的方式是:将全连接的输入单元按照比例随机的设置为0
keras代码
keras.layers.Dropout(rate,noise_shape = None,seed = None)
  • rete:0-1 的浮点数,指定需要断开连接的比例
  • noise_shape:表示将与输入数据相乘的二进制dropout掩层的形状,一般默认即可。
  • seed:生成随机数的随机数种子数。
flatten层

将输入数据展平,他不会影响数据的大小,一般我们将它放在卷积层全连接层中间,起到转换数据的作用。因为卷积层输出的数据是一个多维张量(一般是二维),Flatten层将其转换为向量序列的形式,如下如所示:
在这里插入图片描述

keras代码
keras.layers.Flatten(data_format = None)
  • data_format:一般默认即可,不需要修改

总结

好了,常用的而神经网络层就这些了,此时你再去看实战篇中的模型搭建,就会觉得简单很多了

  • 6
    点赞
  • 45
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 全连接神经网络(全连接神经网络),也称为多感知器(Multilayer Perceptron,MLP),是一种最基本的人工神经网络模型,也是最常用神经网络模型之一。全连接神经网络由多个组成,每都由许多神经元组成,相邻之间的神经元之间都有连接,信息在神经元之间传递,从而实现输入数据到输出数据的映射。全连接神经网络被广泛应用于图像识别、自然语言处理、语音识别等领域。 ### 回答2: 全连接神经网络的简称为FCN(Fully Connected Neural Network)。 全连接神经网络是一种常见的深度学习模型,它的每个神经元都与前一的所有神经元相连。在全连接神经网络中,输入的神经元接收输入数据,并将其传递到隐藏,隐藏的神经元通过激活函数计算并传递到输出,输出的神经元产生最终的预测结果。 全连接神经网络的特点是参数量大、计算复杂度高。因为每个神经元与前一的所有神经元相连,所以在网络中会存在大量的参数,需要大量的计算进行训练和推理。全连接神经网络在一些计算机视觉、自然语言处理等领域取得了不错的效果,但在处理大规模数据时可能会面临计算资源和过拟合等问题。 除了全连接神经网络,还有其他类型的神经网络模型,如卷积神经网络(CNN)和循环神经网络(RNN)。这些模型通过不同的连接方式和结构设计,对于不同的任务和数据类型具有更好的适应性和性能。 ### 回答3: 全连接神经网络的简称为FCN(Fully Connected Neural Network)。全连接神经网络是一种最基础神经网络结构,也称为多感知机。它的每个神经元都与上一所有神经元相连接,每个连接都有一个权重。全连接神经网络包含输入、隐藏和输出。输入接收输入数据,隐藏对这些输入数据进行处理和提取特征,输出则产生最终的预测结果。 全连接神经网络的训练过程是通过反向传播算法来实现的。首先,利用前向传播将输入数据从输入传递至输出,并根据输出结果计算损失函数。然后,利用反向传播计算损失函数对权重和偏置的梯度,并使用梯度下降算法来更新这些参数,从而最小化损失函数。 全连接神经网络在图像识别、语音识别、自然语言处理等领域有广泛的应用。然而,全连接神经网络的参数量较大,且没有考虑输入之间的空间结构信息,导致训练和运行过程的计算量较大,不适用于处理大规模数据和复杂任务。因此,在实际应用中,人们逐渐发展出了一些基于全连接神经网络的改进模型,如卷积神经网络(CNN)和循环神经网络(RNN),来处理更复杂的问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值