产品分析怎么做?90%的产品经理都在用的五大分析模型!

上篇文章,我们系统讲了商品销售分析系统的搭建思路,并举了精细化商品销售看板的例子。而在商品销售开始前,产品分析也是十分重要的环节。在数字化转型过程中,产品分析的核心价值已经从功能设计转向数据优化。Gartner研究显示,​采用数据驱动产品决策的企业产品成功率提升23%,用户留存率增加17%​。然而产品问题复杂繁多,很多朋友常常感觉无从下手,不知道如何有效地优化产品功能和用户体验。于是这些经常私信leo的高频产品问题就出现了。

Q:为什么用户调研报告显示需求满足度90%,产品留存率却持续下滑?

A:功能堆砌≠价值交付。用户表面需求与核心价值存在断层,缺乏数据驱动的需求分层机制,必然陷入虚假满足的数据陷阱。

Q:功能迭代投入资源占比超60%,为什么用户活跃度没有大大提升?

A:资源没有合理分配,功能开发不能满足用户必备型需求,用户当然会白白流失。

Q:竞品功能相似度达80%,为什么市场占有率差距不断扩大?

A:因为用户体验优化和技术应用之间差异太大。即使功能相似,​竞品通过数据分析提升用户体验,增加用户推荐意愿,直接影响流量分配,产品转化率差距当然不断拉大。

今天这篇文章,leo就从产品分析的底层逻辑出发,详细拆解产品分析的数据指标、核心方法论和业务场景应用案例,帮助你掌握产品分析的核心能力。感兴趣的不妨跟随老李思路,一起探究。

目录

一、产品分析要关注的数据指标

1.用户行为指标

2.商品管理指标

3.用户体验指标

4.渠道效能指标

5.产品健康度指标

二、产品分析方法

1.KANO 模型

2.峰终定律

3.产品生命周期

4.MVP 开发四步法

5.用户体验地图

三、业务场景应用案例

1.产品计划达成分析

2.产品年终总结

四、总结

一、产品分析要关注的数据指标

产品分析的数据指标很多,所以很多人常常抓错重点,不知道从哪些方面展开分析。老李从以下5个维度选取了影响产品的核心数据指标:

1.用户行为指标

(1)基础属性分布:性别、年龄、地域等基础画像数据能帮助制订精准的产品营销策略。明确目标用户群体的特征后,可以更有针对性地制定产品推广方案。

(2)复购率 & RFM 模型:复购率是衡量用户忠诚度的重要指标。RFM 模型可以识别出消费频次高但最近未活跃的待召回用户,帮助企业精准地进行用户召回营销。

2.商品管理指标

(1)SKU售罄率:快消品上市 3 个月售罄率低时,需要立即采取促销措施,避免库存积压。

(2)库存周转天数:美妆类目周转天数长时,需要优化供应链,提升库存周转效率。

针对整个商品管理老李整合了一个资源包,里面包括了市场调研、竞品分析、用户需求挖掘、产品定位等等。如果你想做精细化商品管理的话一定要看一下这个资料,相当于一个行业宝典。点击下方卡片就能免费领取商品管理分析解决方案:商品管理分析解决方案该方案基于数据驱动策略,旨在帮助零售企业实现以消费者为中心的智能选品,优化商品结构,提高销售业绩和市场竞争力。 https://s.fanruan.com/m7wyb

3.用户体验指标

(1)NPS(净推荐值):NPS 是衡量用户满意度的重要指标。如果低于行业标准,需要启动用户回访机制,了解用户不满的原因并加以改进。

(2)任务完成率:核心功能的使用完成率低时,需要优化交互路径,提升用户体验。

4.渠道效能指标

(1)CAC(获客成本):信息流广告的 CAC 超过 LTV 的一定比例时,需要调整投放策略,优化渠道成本。

(2)渠道 ROI(投入产出比):通过比较不同渠道的 ROI,可以将资源向高 ROI 渠道倾斜,提升营销效果。

5.产品健康度指标

(1)崩溃率:移动端崩溃率高时,将导致用户卸载。因此,需要加强产品质量监控,降低崩溃率。

(2)API 成功率:支付接口成功率低时,会直接影响交易。需要优化接口稳定性,确保交易顺畅。

二、产品分析方法

在明确了需要关注的数据指标后,接下来我们来看看如何运用合适的方法进行产品分析。

1.KANO 模型

(1)是什么:KANO 模型是一种用于分析和分类用户需求的工具,将需求分为必备型、期望型和魅力型三类,帮助确定产品功能的优先级。

(2)用途:通过 KANO 模型,可以明确哪些功能是用户的基本期望(必备型),哪些功能能够显著提升用户满意度(期望型),以及哪些功能可以给用户带来惊喜(魅力型)。这有助于产品团队合理分配资源,优先开发对用户满意度提升最大的功能。

(3)怎么用:必备型需求是用户认为产品必须具备的,如支付安全。如果缺失,用户会直接流失,因此必须 100% 满足。期望型需求需求与用户满意度呈正相关,如物流时效。提升这些需求的满足程度,可以有效提高用户满意度(NPS)。魅力型需求通常不是用户的基本期望,但一旦满足,会极大地提升用户满意度和忠诚度,如 AR 试妆功能。虽然开发周期可能较长,但投入产出比往往较高。

2.峰终定律

(1)是什么:峰终定律是一种用户体验设计法则,强调用户对体验的记忆主要由峰值(最强烈的情绪体验)和终值(结束时的感受)决定。

(2)用途:通过优化峰值和终值体验,可以显著提升用户对产品的整体满意度和忠诚度,即使在某些环节存在不足,也能通过这两个关键点弥补,减少用户流失。

(3)怎么用:在用户使用产品的过程中,峰值设计能够带来强烈积极情绪的时刻,如提供独特的功能或服务,提升用户整体满意度。终值管理确保用户在结束使用产品时有积极的体验,如提供友好的告别信息或后续的关怀服务,激发用户分享和再次使用的意愿。

3.产品生命周期

(1)是什么:产品生命周期是指产品从进入市场到最终退出市场的全过程,分为导入期、成长期、成熟期和衰退期。

(2)用途:了解产品所处的生命周期阶段,可以帮助制定针对性的产品策略,优化资源配置,提升产品的市场表现和盈利能力。

(3)怎么用

阶段

核心策略

数据监控重点

导入期

快速验证 MVP,以最小的成本测试市场反应

次日留存率,评估用户对产品的初步接受程度

成长期

通过渠道裂变扩大市场份额,提升用户获取效率

CAC/LTV 比值,保证获客成本与用户生命周期价值的平衡

成熟期

进行功能微创新,优化用户体验,提升用户忠诚度

老客复购占比,关注核心用户群体的持续贡献

衰退期

控制成本,优化运营效率,延长产品生命周期

月活下降斜率,监测用户流失速度

4.MVP 开发四步法

(1)是什么:MVP(最小可行产品)开发四步法是一种快速迭代的产品开发方法,通过假设验证、低保真原型、灰度发布和数据埋点,快速将产品推向市场并持续优化。

(2)用途:这种方法可以有效降低开发成本和风险,快速获取用户反馈,确保产品方向符合市场需求,提升产品的市场竞争力。

(3)怎么用

步骤

操作方法

作用

假设验证

用假按钮或模拟功能测试,依点击率等判需求真伪

避免盲目开发,确保需求真实

低保真原型

用 Axure 等工具制作交互流程图

快速验证概念,省成本,定方向

灰度发布

选部分用户做 AB 测试,逐步扩大覆盖

降推广风险,收集用户反馈

数据埋点

在关键环节设埋点

收集准确行为数据,支撑分析决策

5.用户体验地图

(1)是什么:用户体验地图是一种可视化工具,用于梳理用户与产品交互的全过程,包括用户的行为、情感和痛点。

(2)用途:通过用户体验地图,可以全面了解用户在使用产品过程中的体验,发现体验断点和优化机会,从而提升整体用户体验。

(3)怎么用

步骤

操作方法

作用

触点拆解

细分用户与产品交互触点,关注电商浏览、下单等高流失环节

定位交互问题点

情绪曲线

分析各触点情绪,设惊喜打造愉悦峰值

提升用户满意度

改进工具

用可视化模板绘图,定位并解决问题

提效优化产品体验

三、业务场景应用案例

掌握了理论基础后,下面分享两个业务场景具体应用案例,帮助大家彻底学会如何做产品分析。先看一下做好的分析看板,都是老李用FineBI制作的。

1.产品计划达成分析

【分析思路】

(1)产量维度:次氯酸钠缺计划产量,氯化氢实际远超计划,对比可知生产与计划差异。从市场需求、生产环节找产量差异原因,如需求变动、设备技术及原材料供应等影响。

(2)成本维度:原材料成本占 64.63%,是成本控制重点。各成本项目计划与实际差异大,细分成本项也可能波动,需深挖价格、工艺等因素。

(3)关联分析:探究产量变化对成本结构的影响,以及成本变动对产量的制约。

【指导策略】

(1)产量策略:次氯酸钠补充计划产量对比。低则排查生产问题,高则评估市场,调整规模或库存。氯化氢评估需求可持续性。长期增长就扩产,短期波动则控库存,利用产能开发新品。

(2)成本策略:原材料加强供应商管理,优化库存,找替代品降成本。针对差异大的项目,分析浪费、能耗等原因,优化流程与设备。

(3)综合策略:成本降且产量足就降价,成本升则提品质保价格。成本高、产量低且需求小的产品优化或淘汰,有潜力的加大投入。

这个产品计划达成分析看板就是通过FineBI搭建的,FineBI作为国产自助式数据分析工具,不论是对于产品经理还是普通销售人员而言,上手操作都非常容易,而且它还内置了很多免费的模板,几乎涵盖了所有常见的产品业务场景、行业领域,对于有数据分析需求的朋友而言是一款非常方便的工具,如果你有相关需求的话,可以点击下面的链接,免费下载使用:帆软通行证登录

2.产品年终总结

【分析思路】

(1)客户留存率分析:产品一客户留存率为68%,产品二仅为36%。对比两者可知产品一在客户留存方面表现更优,需进一步探究产品二留存率低的原因,是产品功能、用户体验,还是客户服务等方面存在问题。

(2)客户画像分析:产品一的优质客户群体结构相对丰富,包含各类不同层次客户;产品二则主要是痛点客户。这表明产品一可能满足了不同类型客户的需求,而产品二可能在解决客户核心痛点上存在不足,或者未有效拓展其他类型客户群体。

(3)产品耗费资源分析:从图中可知,两款产品不同模块的研发时间和测试时间差异较大。比如产品一主模块耗费资源最多,产品二同样在部分模块耗费较多资源。

【指导策略】

(1)客户留存策略:对于产品二,深入调研低留存率的原因,针对痛点客户的反馈优化产品功能和服务;产品一可继续维护客户关系,挖掘优质客户的潜在需求,进一步提高留存率。

(2)客户拓展策略:产品二应在解决痛点客户问题的基础上,借鉴产品一的经验,拓展客户类型,吸引更多普通客户、活跃客户等;产品一可以尝试深化与不同类型客户的合作,提升客户忠诚度。

(3)资源分配策略:根据产品耗费资源的数据,重新审视资源分配的合理性。对于耗费资源多但产出效益低的模块,减少资源投入;对于关键且有潜力的模块,适当增加资源,以提高研发和测试效率。

四、总结

产品分析的本质,是通过数据还原用户需求、验证产品价值、驱动科学决策。正如哈佛商业评论所说的:“数据不会直接给出答案,但能排除错误选项。”在竞争白热化的市场环境中,产品分析能力已经成为破局关键。掌握产品分析方法论,本质是掌握在不确定性中寻找确定性的能力,这才应该成为你的核心竞争力。三个行动建议请收好:

1.建立指标监控体系:定期追踪关键产品指标波动,发现产品未来趋势。

2.优化产品分析流程:将KANO模型、峰终定律等方法嵌入产品迭代周期。

3.培养数据敏感性:关注异常值背后的用户行为迁移。

最后,如果大家有需要的话,可以下载一份这个产品分析报告的模版和图表。里面可以任意搭配,直接拖拽就可以制作成我上面那样的看板。而且还有其他业务场景的模版,点击下方卡片就可以免费领取:免费试用FineBI模板https://s.fanruan.com/2xxcp

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Leo.yuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值