(1) 基于自注意力机制的抑郁症患者识别算法
抑郁症是一种广泛存在的心理健康问题,对患者的生活质量造成严重影响。尽早识别并进行有效治疗对抑郁症的康复至关重要。然而,当前常用的量表评估方法主观性较强,易受到评估者的个人经验和偏见的影响,导致诊断的准确性较低。因此,亟需一种客观、高效的抑郁症识别方法。近年来,深度学习技术由于其强大的表征学习能力,已逐渐应用于医学影像和信号处理领域,为抑郁症的早期识别提供了新的可能性。
本研究首先提出了一种基于自注意力机制的深度学习算法来识别抑郁症患者。自注意力机制因其在捕捉数据间相关性方面的优势,能够有效识别脑电信号中的潜在联系。该方法的核心步骤包括:首先,利用多头自注意力机制,自动学习脑电图(EEG)信号中各通道之间的连接关系。该连接矩阵能够反映不同脑区在信号处理中的互动情况,进而帮助模型更好地理解信号中的潜在信息。接着,将自注意力机制学习到的连接矩阵输入到并行的双分支卷积神经网络模型中,以便进行更深层次的特征提取。
双分支卷积神经网络的设计使得模型能够在不同分支中提取丰富的特征信息,从而对抑郁症患者和健康被试进行有效区分。在特征提取完成后,模型将两个分支提取的特征信息融合,并输入到全连接层进行二分类任务。实验过程中采用了跨被试的留一法交叉验证策略,该策略能够有效评估模型的泛化能力。与基于传统计算脑连接矩阵的深度学习方法相比,所提出的基于自注意力机制的模型在分类性能上表现优越,平均分类准确率达到了91.06%。这一结果表明,基于自注意力机制的深度学习算法能够有效捕捉脑电信号中的微妙变化,为抑郁症的早期识别提供了有力支持。
(2) 基于时-空卷积神经网络的抑郁症患者识别算法
针对抑郁症患者和健康被试的脑电信号在时间和空间维度上的差异性