深度强化学习算法在金融交易决策中的优化应用【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

✅ 具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)单资产交易任务中的深度强化学习算法改进

在单资产交易场景中,为克服现有强化学习算法存在的问题,做出了多方面的优化。

对于市场状态表示,进行了深入且全面的挖掘。通过构造多种特征,从价格走势、成交量变化、波动性指标等多个维度来描述市场状态,使得所构建的状态表示能够更精准地反映真实市场情况,为后续交易决策提供更可靠的依据。例如,不仅考虑资产的当前价格,还纳入了过去一段时间的价格均值、标准差,以及成交量的变化趋势等因素,以此来更细致地刻画市场的动态特征。

同时,提出了一种独特的考虑资产回撤的回报方程。传统的回报计算往往只关注资产的增值情况,而此回报方程将资产回撤纳入考量范围。在交易过程中,从市场环境中获取的回报信息被用于引导算法学习如何在训练阶段降低收益的回撤风险。这意味着算法在追求收益增长的同时,会更加谨慎地避免大幅回撤情况的发生,从而提升交易策略的稳定性和抗风险能力。

基于深度强化学习中的 DQN 算法,进一步提出了适用于单资产交易的改进算法。在神经网络的全连接层中创新性地加入服从高斯分布的噪声来驱动探索过程。相较于 DQN 算法原本采用的贪心探索策略,这种噪声驱动的探索方式能够更广泛地搜索策略空间,具有更好的探索效果。而且,网络中的噪声影响由一组特定参数进行控制,这组参数如同网络中的其他参数一样,通过梯度下降法进行学习和优化,使得噪声的添加更加智能和自适应,能够根据不同的市场情况灵活调整探索的力度和方向。

此外࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值