(1)分形维数在水稻生长阶段识别中的作用
智慧农业是我国农业向自动化、现代化发展的新方向。在水稻自动化培育中,不同生长阶段需采用不同培育方法,传统的水稻生长阶段识别主要依靠人工观察,存在繁琐、劳动量大、主观性强、易出错等问题,在规模化种植背景下弊端明显。因此,计算机精确识别水稻生长阶段具有重要意义。本文根据水稻图像计算出一种纹理参数 —— 分形维数,通过对华中农业大学智慧农业团队提供的水稻图像与数据进行分析,包括处于分蘖期、拔节期和抽穗期三个生长阶段的数据集和图像集。采用阈值法将图像转换成二值图,利用盒计数法计算出 IFD 与 SFD 分形维数,并通过异质性分析和正态性检验证明分形维数可有效用于水稻生长阶段的识别。综合统计学方法、随机森林特征筛选法和基于神经元敏感度的 Garson 方法进行特征筛选,得到水稻参数数据集。
(2)使用机器学习和深度学习方法进行识别
分别以水稻数据集与图像集为研究对象,一方面,通过五种机器学习分类器,将筛选后的水稻数据集与分形维数作为输入特征,进行生长阶段识别,并利用十折交叉验证法进行模型效果评估。另一方面,搭建自编码卷积神经网络对水稻彩色图像进行生长阶段识别,将自编码网络与 VGG16 网络进行对比,再使用类激活映射法将卷积层中间神经元输出可视化,分析卷积神经网络提取水稻特征的决策依据。
(3)分形维数与混合模型在水稻生长阶段识别中的应用
将分形维数应用于深度学习与机器学习的混合模型 CNN - ML。针对机器学习特征提取过程复杂与深度学习分类器单一的不足,将卷积神经网络中自动提取的水稻特征与分形维数相结合,共同作为机器学习分类器的输入特征进行生长阶段识别。实验证明,对于支持向量机,仅使用水稻数据集的模型准确率为 82.63%,加入 IFD 分形维数后的模型
基于分形维数和深度学习的水稻生长阶段智能识别【附代码】
于 2024-10-18 16:52:50 首次发布