(1)自适应特征相关性区域分割的差分隐私深度学习方法 在深度学习模型中,不同的输入特征对模型输出的影响程度是不同的。基于这一点,研究提出了一种自适应特征相关性区域分割的差分隐私深度学习方法。这种方法首先对输入特征和模型输出之间的相关性进行分析,然后根据相关性的程度向特征注入不同水平的噪声,以此来保护数据的隐私性。同时,为了减少噪声对模型精度的影响,该方法还采用了泰勒展开来近似损失函数,并向损失函数的近似值中注入噪声。这种方法的关键在于,它将噪声的添加过程与模型训练过程分离,从而避免了隐私预算在训练过程中的累积,为模型训练预留了更多的空间。实验结果表明,该方法能够在保护用户隐私的同时,保持模型的可用性和准确性。
(2)基于自适应裁剪的差分隐私深度学习方法 在差分隐私中,噪声的添加是一个关键步骤。研究提出了一种基于自适应裁剪的差分隐私深度学习方法。这种方法在每次迭代过程中,根据历史梯度的范数来动态调整裁剪阈值,并对梯度进行裁剪。裁剪后的梯度再经过噪声的添加,以此来保护模型的隐私性。这种方法的创新之处在于,它将裁剪阈值作为噪声方差的一个参数,从而实现了对噪声量的自适应调整。这种方法在保持模型精度的同时,能够根据训练进度动态调整隐私保护的强度。实验结果表明,该方法在较小的隐私保护水平下,能够实现更高的模型精度,这对于需要高精确度的深度学习应用来说,具有重要的实际意义。
(3)自适应差分隐私的联邦学习框架 联邦学习是一种分布式的机器学习方法,它允许多个客户端协同训练模型,同时保护各自的数据隐私。研究提出了一种自适应差分隐私的联邦学习框架,该框架在每个客户端进行本地模型更新时,自适应地选取梯度裁剪阈值,并执行梯度裁剪。在将更新后的模型参数上传至服务器之前,向参