1)基于深度学习的玉米单产估测方法和归因分析研究,旨在解决大空间尺度玉米生产环境的空间异质性问题,提高玉米单产估测的精度和稳定性。本研究首先提出了一种基于农业多源数据和无监督聚类的玉米种植区域划分方法。该方法通过整合气象数据、土壤数据和历史产量数据,将美国玉米带9州783县划分为多个假定均质的玉米生产区域。具体而言,研究使用了K-means聚类算法对多源数据进行聚类分析,确保每个区域内玉米生产环境的相似性。为了验证区域划分的有效性,本研究构建了线性回归模型进行估产精度测试。结果表明,基于区域划分的线性估产模型在所有州的估产精度均优于全局模型,模型决定系数(R²)的提升幅度为3%至19%。t-SNE降维可视化方法进一步从特征分布的角度揭示了不同区域数据之间的可分性,验证了区域划分的有效性。这一方法不仅提高了大空间尺度玉米估产的精度,还为后续构建深度学习估产模型提供了重要的区域划分信息。
(2)为了有效表征玉米单产与气象因子的复杂互作机制,本研究构建了一种基于深度学习的玉米估产模型——Deep Crop Net (DCN)。DCN模型通过嵌入注意力机制的长短期记忆神经网络(LSTM)对玉米生长过程的时序特征进行提取,通过多任务学习方法学习玉米产量的空间差异。具体而言,LSTM层能够捕捉玉米生长过程中的时间依赖关系,注意力机制则能够突出关键时间点的气象因子对玉米单产的影响。多任务学习方法则通过共享底层特征提取器,同时学习不同玉米生产分区的单产预测任务,提高了模型的泛化能力。实验结果表明,DCN模型在1981-2020年期间对美国玉米带县级玉米单产的估测精度显著优于传统的套索回归(LASSO)模型和随机森林(RF)模型。在所有年份和胁迫年份场景下,DCN模型的均方根误差(RMSE)分别为0.93 Mg ha⁻¹和1.26 Mg