(1)基于图神经网络的协同过滤推荐算法及问题提出
随着数据量的持续增多,用户在海量数据中难以有效提取所需信息,推荐系统应运而生。个性化推荐系统通过获取用户个人喜好信息的特征,将用户可能感兴趣的内容推荐给用户,从而克服信息过载问题。推荐算法作为核心技术,传统推荐算法往往忽视用户与物品间的本质联系,无法充分提取所有特征信息,进而影响推荐结果的正确性。而图神经网络具有强大的特征提取能力,可以将用户和项目的交互信息编码进嵌入层,为推荐算法研究提供了新思路。
(2)提出 LGCN-A 模型及优势
针对因提取特征信息不足而影响推荐效果的问题,本文在轻量级图卷积网络模型(Light Graph Convolution Network,LightGCN)的传播层引入自注意力机制,提出 LGCN-A 模型。首先,通过堆叠多层的 embedding 传播层,显式建模用户与项目之间的高阶连接性,以提升 embedding。这样可以更好地捕捉用户与项目之间复杂的关系,从而提高推荐的准确性。其次,在传播层给予不同用户对不同项目不同的权重值,以展现不同用户对不同项目的偏好程度。通过这种方式,可以更加精准地进行推荐,满足用户的个性化需求。不同的用户具有不同的兴趣爱好和偏好,给予不同的权重值能够更好地反映这些差异,从而提高推荐的针对性和有效性。
(3)实验验证及应用
本文分别在 Gowalla、Amazon-Book 和 Yelp2018 三个数据集上对 LGCN-A 模型进行实验验证。实验结果表明,LGCN-A 使用不同权重值进行的加权和作为最终输入,推荐效果比其他算法更好。相较于其他模型,LGCN-A 模型的准确率更高。这充分证明了