📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文写作指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文指导
论文一对一辅导
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)信贷客户细分模型的构建 研究首先聚焦于信贷客户的细分,以违约风险和误分程度为视角。通过异质集成学习方法,结合多个基分类器对信贷数据的预测结果,发现即使具有相同类别标签的客户间也存在不同程度的违约风险。研究根据基分类器预测结果对客户进行风险评级,并将信贷客户细分为不同类别,如最高违约风险类客户、目标客户、最易误分的非履约类客户等。这一细分过程不仅为信贷客户细分提供了新的视角和方法,还挖掘了客户细分类间的重要风险特征,为信贷决策提供了支持
。
(2)解决数据不均衡问题的违约风险评估 针对信贷数据中存在的严重数据不均衡问题,研究提出了融合样本关注度矩阵的随机森林提升算法(FOMBRF)。该算法结合误分损失、误分程度等因素构建客户细分类的样本关注度矩阵,以针对性地提高模型对高风险、高损失、难分类样本的学习程度。通过分析分类模型方差、偏差间关系,并结合Bagging