📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)量子机器学习在金融欺诈检测中的应用 量子机器学习算法通过结合量子计算的指数级加速优势和机器学习的数据处理能力,为金融欺诈检测提供了新的解决方案。在信用卡欺诈检测中,量子隐马尔可夫模型(QHMM)被提出用于替代传统的隐马尔可夫模型,以对信用卡交易的时序序列进行建模。QHMM在不同的数据集上生成不同的模型,并将不同模型对每条数据进行概率输出值作为新的特征加入特征数据集中,用于欺诈行为的检测判断。实验发现,尽管QHMM与经典的隐马尔可夫模型表现相似,但在资源利用上更少,从而提高了判定效率
。
(2)量子分类器在欺诈检测模型中的作用 在建立了量子信用卡欺诈检测模型的基础上,研究者进一步探讨了量子分类器对模型判定准确率等性