📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1) 特征工程及数据预处理 在互联网金融贷款的风险评估中,数据质量与特征的有效性对模型的性能至关重要。因此,本文首先基于Lending Club的历史信贷数据集,进行了系统的特征工程和数据探索性分析,以确保模型的输入数据具有高质量和高代表性。为了更好地理解数据,我们对数据集中的各类客户信息进行了描述性统计分析,包括贷款金额、利率、收入水平等关键变量。针对原始数据存在的缺失值和异常值,我们进行了处理,使用中位数插补和删除异常数据来清理数据。为确保模型能够处理多种类型的数据,本文对离散变量进行了独热编码(One-Hot Encoding),将其转换为模型可接受的数值格式。此外,为解决数据不平衡问题,本文使用了SMOTE(Synthetic Minori