大数据驱动的个人信用风险评估模型毕业论文【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)随着“互联网+”战略的推进,电子商务、社交平台和在线支付工具已经深入到每个人的日常生活中。互联网金融在中国呈现出蓬勃发展的态势,包括互联网支付、众筹融资、P2P借贷、在线理财等多种形式。然而,如何全面准确地评估个人信用风险,并在此基础上提供个性化的金融服务,成为商业银行、小额贷款公司等传统金融机构以及新兴互联网金融机构亟待解决的问题。当前,各类金融机构在个人信用风险评估中过度依赖央行的个人征信系统,但该系统存在数据时效性、全面性和层次性不足的问题。大数据技术为个人信用风险评估提供了新的方法,通过整合用户在互联网上的购物、交易、社交等行为数据,可以构建一个更加完整的用户信用画像。

大数据环境下的个人信用风险评估模型——CreditNet研究框架

本文提出了基于大数据的个人信用风险评估模型——CreditNet研究框架。该框架分为三个阶段,逐步限定技术要点,开展模型构建研究:

  • 第一阶段:用户信用画像构建

    • 在大数据环境下,个人信息的有效收集和组织是关键。本文引入了用户画像的概念,从六大维度构建用户信用画像,包括基本信息、消费行为、社交行为、金融行为、网络行为和第三方数据。这些维度涵盖了用户的多方面信息,有助于更全面地了解用户的信用状况。
    • 为了增强单变量的风险区分能力,本文采用了变量衍生的方法,通过组合和转换原始变量生成新的特征,提高模型的预测能力。
    • 数据预处理是构建有效模型的基础。本文详细阐述了数据收集、数据核对和数据清洗的方法,确保数据的质量和一致性。同时,结合单变量分析和多变量分析方法,为后续建模奠定坚实的数据基础。
  • 第二阶段:rf-l核模型构建

    • 在这一阶段,本文将机器学习中的随机森林模型与逻辑回归模型相结合,构建了rf-l核模型。首先,利用随机森林中的CHAID决策树进行初步分析,生成二元决策树变量。然后,将随机森林模型的输出结果导入逻辑回归模型中进行统计建模。
    • 通过这种结合方式,不仅可以利用随机森林模型的非线性拟合能力和变量选择能力,还可以利用逻辑回归模型的解释性和稳定性。最终生成一系列具有风险评估能力的子模型,为大数据信息转变为风险评估依据奠定了模型基础。
  • 第三阶段:adaboost集成学习算法应用

    • 在第三阶段,本文提出将Adaboost集成学习算法应用于rf-l核模型生成的一系列评估子模型的集成研究中。通过对不同评估能力的子模型进行集成,增强了最终模型的评估效果。
    • Adaboost算法通过迭代的方式,逐步增加那些被错误分类样本的权重,使得模型更加关注难以分类的样本。这样可以有效提升模型的整体性能,尤其是在处理不平衡数据集时表现尤为突出。

(2)用户信用画像构建

  • 用户画像概念引入

    • 用户画像是对用户特征的综合描述,可以帮助金融机构更好地理解用户的行为模式和信用状况。本文从六大维度构建用户信用画像:
      • 基本信息:包括年龄、性别、职业、教育水平等。
      • 消费行为:包括线上购物记录、消费金额、购买频率等。
      • 社交行为:包括社交平台活跃度、好友数量、互动频率等。
      • 金融行为:包括银行账户流水、信用卡使用情况、投资记录等。
      • 网络行为:包括上网时间、访问网站类型、搜索关键词等。
      • 第三方数据:包括公共记录、社交媒体评价、其他机构提供的信用评分等。
  • 变量衍生方法

    • 为了增强单变量的风险区分能力,本文采用了多种变量衍生方法。例如,通过计算用户的月均消费额、消费波动率、购物频次等指标,可以更准确地反映用户的消费习惯。此外,还引入了一些复杂的特征工程方法,如时间序列分析、聚类分析等,以提取更有意义的特征。
  • 数据预处理

    • 数据预处理是确保数据质量和一致性的关键步骤。本文详细介绍了数据收集、数据核对和数据清洗的方法:
      • 数据收集:通过API接口、爬虫技术等方式从多个数据源获取用户数据。
      • 数据核对:通过比对不同数据源的信息,确保数据的一致性和准确性。
      • 数据清洗:去除重复记录、填充缺失值、处理异常值等,确保数据的完整性。
  • 单变量分析和多变量分析

    • 通过单变量分析,可以了解每个变量对信用风险的影响程度。常用的单变量分析方法包括相关性分析、卡方检验等。
    • 多变量分析则考虑多个变量之间的相互作用,常用的方法包括主成分分析(PCA)、因子分析等。通过这些方法,可以进一步提炼出更具代表性的特征,提高模型的预测能力。

(3)rf-l核模型构建

  • 随机森林模型与逻辑回归模型结合

    • 随机森林是一种强大的集成学习方法,能够处理高维数据并具有良好的抗过拟合能力。本文利用随机森林模型进行初步分析,生成二元决策树变量。
    • 逻辑回归模型是一种经典的统计模型,具有较好的解释性和稳定性。通过将随机森林模型的输出结果导入逻辑回归模型中,可以充分利用两者的优势,提高模型的整体性能。
  • CHAI决策树分析

    • CHAID(Chi-squared Automatic Interaction Detection)决策树是一种基于卡方检验的决策树方法。本文利用CHAID决策树对数据进行初步分析,生成二元决策树变量。这些变量可以作为逻辑回归模型的输入,提高模型的预测能力。
  • rf-l核模型生成

    • 通过上述步骤,本文生成了一系列具有风险评估能力的子模型。这些子模型可以单独用于风险评估,也可以通过集成学习方法进行进一步优化。

adaboost集成学习算法应用

  • Adaboost算法原理

    • Adaboost是一种经典的集成学习算法,通过迭代的方式逐步增加那些被错误分类样本的权重,使得模型更加关注难以分类的样本。这样可以有效提升模型的整体性能,特别是在处理不平衡数据集时表现尤为突出。
  • 子模型集成

    • 本文将Adaboost算法应用于rf-l核模型生成的一系列评估子模型的集成研究中。通过对不同评估能力的子模型进行集成,增强了最终模型的评估效果。具体步骤如下:
      • 初始化权重:为每个样本分配初始权重。
      • 训练弱分类器:通过训练多个弱分类器(如决策树),并根据样本权重调整分类器的重要性。
      • 更新权重:根据分类器的表现,更新样本的权重,增加被错误分类样本的权重。
      • 集成强分类器:将多个弱分类器集成,形成一个强分类器。

模型效果验证

  • 区分能力测试

    • 本文从CreditNet模型的区分能力进行了测试,通过AUC(Area Under the Curve)等指标评估模型的性能。结果显示,CreditNet模型在区分好客户和坏客户方面表现出色。
  • 稳定性测试

    • 模型的稳定性是衡量其可靠性的重要指标。本文通过交叉验证、时间窗口测试等方法,验证了CreditNet模型在不同时间段和不同数据集上的稳定性。
  • 变量名称类型描述
    年龄数值型客户的年龄
    性别类别型客户的性别(男/女)
    职业类别型客户的职业类型
    教育水平类别型客户的教育水平(高中/本科/研究生及以上)
    月均消费额数值型客户每月平均消费金额
    消费波动率数值型客户消费金额的波动率
    社交活跃度数值型客户在社交平台的活跃度
    好友数量数值型客户在社交平台的好友数量
    信用卡使用情况数值型客户信用卡的使用情况
    投资记录数值型客户的投资记录
    上网时间数值型客户每天的上网时间
    访问网站类型类别型客户经常访问的网站类型
    第三方信用评分数值型第三方机构提供的信用评分
% 初始化参数
data = readtable('credit_data.csv'); % 读取信用数据
X = table2array(data(:, 1:end-1)); % 特征矩阵
y = data.CreditRisk; % 目标变量

% 数据预处理
% 数据标准化
X = (X - mean(X)) ./ std(X);

% 划分训练集和测试集
cv = cvpartition(size(X, 1), 'HoldOut', 0.3);
idx = cv.test;
X_train = X(~idx, :);
y_train = y(~idx);
X_test = X(idx, :);
y_test = y(idx);

% 构建随机森林模型
num_trees = 100;
rf_model = TreeBagger(num_trees, X_train, y_train, 'Method', 'classification');

% 生成二元决策树变量
chaid_tree = fitctree(X_train, y_train, 'SplitCriterion', 'gdi');
chaid_pred = predict(chaid_tree, X_train);
X_train = [X_train, chaid_pred];

% 构建逻辑回归模型
logistic_model = fitglm(X_train, y_train, 'Distribution', 'binomial');

% 集成学习:Adaboost
num_learners = 50;
learner_models = cell(1, num_learners);
weights = ones(size(y_train, 1), 1) / size(y_train, 1);
for i = 1:num_learners
    learner_models{i} = fitglm(X_train, y_train, 'Weights', weights, 'Distribution', 'binomial');
    
    % 预测
    y_pred = predict(learner_models{i}, X_train);
    y_pred = double(y_pred == y_train);
    
    % 更新权重
    error_rate = sum(weights .* (1 - y_pred)) / sum(weights);
    alpha = log((1 - error_rate) / error_rate);
    weights = weights .* exp(alpha * (1 - y_pred));
    weights = weights / sum(weights);
end

% 测试集预测
chaid_pred_test = predict(chaid_tree, X_test);
X_test = [X_test, chaid_pred_test];
y_pred_test = zeros(size(y_test, 1), 1);
for i = 1:num_learners
    y_pred_test = y_pred_test + alpha * predict(learner_models{i}, X_test);
end
y_pred_test = sign(y_pred_test);

% 评估模型
confusion_matrix = confusionmat(y_test, y_pred_test);
accuracy = sum(diag(confusion_matrix)) / sum(confusion_matrix(:));
fprintf('Accuracy: %.2f%%\n', accuracy * 100);

% 绘制混淆矩阵
figure;
heatmap(confusion_matrix, 'Colormap', parula, 'ColorbarVisible', 'on', ...
    'XLabel', 'Predicted Class', 'YLabel', 'True Class');
title('Confusion Matrix');

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值