📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
-
- 以往的个人信用风险评估研究往往存在研究视角单一、关联信息利用不足、模型评估指标片面等问题。本文综合考虑消费信贷的特点,从风险和收益双重视角出发,利用多任务随机森林算法,挖掘消费信贷数据中蕴含的风险和收益关联信息,进而构建了消费信贷信用风险评估模型。
- 本文首先基于信贷样本的违约情况和项目内部收益率信息,构建了多任务学习模型的目标变量。通过这种方式,模型不仅能够预测违约概率,还能同时考虑项目的收益情况,从而提供更全面的风险评估。
-
多任务学习算法设计
- 在多任务学习中,考虑到多个任务之间的信息关联和拟合优化问题,本文设计了专门的损失函数。该损失函数能够在多个任务之间共享信息,提高模型的整体性能。通过重构损失函数后的随机森林算法,构建了个人信用风险多任务评估模型。
- 为了全面评价信用风险评估模型的性能表现,本文依据消费信贷信用风险评估的代价收益矩阵,构建了违约降低率和利润提升率两个指标。这些指标能够更全面地反映模型在实际应用中的效果。
-
实证研究结果
- 本文在国内真实消费信贷数据上进行了实证研究,发现所提出的方法在多个评估指标上显著优于其他信用风险评估模型,并且结论具有良好的稳健性。这表明多任务学习方法在消费信贷信用风险评估中具有较高的理论意