银行业视角的个人信用风险评估的深度学习应用毕业论文【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)个人信用风险评估的现状与挑战

  • 阐述个人信用风险对银行和金融体系的重要性。个人信用风险直接关系到银行的资产质量和盈利能力,违约风险的增加可能导致银行不良贷款率上升,影响其稳健运营。同时,个人信用风险的积累也会对整个金融体系的稳定性造成冲击,可能引发系统性风险。例如,在经济不景气时,个人违约风险增加,若银行无法有效评估和管理,可能会引发连锁反应,影响金融市场的正常运行。
  • 分析传统信用风险评估方法的局限性。传统方法过于依赖个人征信,数据来源单一,时效性、全面性和多样性不足。无法及时反映个人信用状况的变化,也难以涵盖个人在各个领域的行为数据,导致对个人信用风险的评估不够全面准确。例如,仅依靠个人信用报告中的历史还款记录等信息,无法全面了解个人的消费习惯、社交关系等对信用风险有潜在影响的因素。
  • 探讨大数据时代给个人信用风险评估带来的机遇与挑战。大数据提供了多源的个人数据,丰富了信用画像,但也带来了高维、稀疏、多噪声以及数据样本不平衡等问题。高维数据使得特征选择困难,稀疏数据增加了模型处理的难度,噪声干扰影响评估准确性,数据样本不平衡则可能导致模型偏向多数类,忽视少数类的风险特征,从而影响整体评估效果。

(2)基于银行大数据的个人信用风险评估特征构建

  • 利用银行大数据构建个人信用画像。根据用户画像原理,整合银行内部的各种数据,包括客户的交易记录、账户余额、消费行为、贷款还款情况等,以及外部数据如社交媒体信息(若可获取且合法)等,构建全面的个人信用画像。例如,通过分析客户的消费行为,了解其消费偏好、消费频率和消费金额等,判断其消费能力和稳定性,从而为信用风险评估提供更多维度的信息。
  • 验证银行大数据与个人信用风险的相关性及对评估结果的贡献。通过统计分析方法,分析大数据中的各项指标与个人信用风险之间的关联程度。例如,研究发现客户的账户余额波动情况与信用风险有一定相关性,余额波动较大的客户可能信用风险相对较高。同时,通过建模对比,将基于银行大数据的特征纳入评估模型与传统模型进行比较,验证其对评估结果的提升作用。例如,使用基于大数据特征的模型在预测准确率、召回率等指标上优于传统模型,说明银行大数据对信用风险评估有重要贡献。
  • 分析不同信用群体的差异性画像。通过对大数据的深入挖掘,区分不同信用等级的客户群体,分析其在各个方面的特征差异。例如,信用良好的客户可能在消费行为上更加规律,贷款还款及时,而信用较差的客户可能存在频繁的逾期还款记录,消费行为也较为不稳定。这些差异性画像为银行制定个性化的信用风险评估策略提供了依据。

(3)基于生成式对抗网络的信用不平衡数据样本学习

  • 信用风险评估中数据样本不平衡问题的现状及传统解决方法的不足。在信用风险评估中,违约客户(少数类)往往数量远少于正常客户(多数类),导致数据样本不平衡。传统方法如对少数类样本进行局部随机性采样,容易出现采样不准和失真的问题。例如,简单的随机过采样可能导致模型过拟合,对少数类样本的特征过度学习;随机欠采样则可能丢失重要的少数类样本信息,影响模型对违约风险的识别能力。
  • 引入生成式对抗网络(GAN)解决信用不平衡数据样本问题。GAN 是一种生成式学习模型,可用于生成数据。将其应用于信用不平衡数据样本学习中,通过生成新的少数类样本,改善数据分布的不平衡性。针对信用风险评估数据样本的特点和 GAN 方法存在的问题,提出改进的 Focal - Loss GAN 方法。该方法通过调整损失函数,更加关注难分类的少数类样本,提高生成样本的质量和多样性。
  • 实验对比论证 Focal - Loss GAN 方法的有效性。结合公开数据集以及银行内部的不平衡信用数据进行实验,将 Focal - Loss GAN 方法与传统的采样方法以及其他改进的 GAN 方法进行对比。通过评估指标如准确率、召回率、F1 值等,验证 Focal - Loss GAN 方法在解决信用不平衡数据样本问题上的优势。例如,实验结果显示,使用 Focal - Loss GAN 方法生成的样本训练的模型,在对少数类样本的识别准确率上有显著提高,同时整体评估效果更优。

(4)基于深度学习的个人信用风险评估方法

  • 堆栈降噪自编码神经网络(SDANN)算法的提出与设计。针对大数据环境下传统信用风险评估模型的不足,基于深度学习框架提出 SDANN 算法。该算法通过堆栈多个降噪自编码层,能够自动学习数据中的特征表示,有效处理高维、稀疏数据。在编码过程中,引入降噪机制,减少噪声对特征学习的影响,提高模型的鲁棒性。例如,通过在输入数据中添加一定程度的噪声,然后让模型学习去除噪声并还原原始数据,从而使模型学习到更具代表性的特征。
  • 将 SDANN 算法应用于银行大数据环境下的个人信用风险评估。在银行大数据上进行实验,将客户数据分为训练集、验证集和测试集。通过训练 SDANN 模型,调整模型的参数,使其能够准确地对个人信用风险进行评估。在训练过程中,监控模型的损失函数值和评估指标的变化,及时调整学习率等参数,确保模型的收敛和优化。
  • 实验论证和对比分析 SDANN 算法的优势。与传统的信用风险评估方法以及其他深度学习算法进行对比实验。结果表明,在大数据环境下,SDANN 算法能够更好地挖掘和表达反映个人信用的本质特征,相比于传统的特征选择方法效果更好。例如,在预测准确率上,SDANN 算法比传统方法提高了若干个百分点,能够更准确地识别违约客户和正常客户。同时,引入降噪模型进一步提升了模型的鲁棒性,在面对不同噪声水平的数据时,都能保持相对稳定的评估性能。

客户编号年龄收入贷款余额还款记录(按时还款次数 / 总还款次数)消费金额月均值信用评级(假设分为 A、B、C 级)
13080005000012/153000A
245120008000010/125000B
3255000300008/102000C
435100006000014/184000A
5501500010000016/206000B
.....................



[normalizedData, mu, sigma] = zscore(data(:, 1:end - 1)); % 对特征数据进行归一化,不包括标签列

% 划分训练集、验证集和测试集
trainRatio = 0.7; % 70%作为训练集
valRatio = 0.15; % 15%作为验证集
testRatio = 0.15; % 15%作为测试集

numSamples = size(data, 1);
numTrain = round(trainRatio * numSamples);
numVal = round(valRatio * numSamples);

trainData = normalizedData(1:numTrain, :);
trainLabels = data(1:numTrain, end); % 标签数据
valData = normalizedData(numTrain + 1:numTrain + numVal, :);
valLabels = data(numTrain + 1:numTrain + numVal, end);
testData = normalizedData(numTrain + numVal + 1:end, :);
testLabels = data(numTrain + numVal + 1:end, end);

% 构建简单的神经网络(这里只是一个示例,实际可以使用更复杂的深度学习框架)
layers = [
    fullyConnectedLayer(100) % 隐藏层,100 个神经元
    reluLayer
    fullyConnectedLayer(2) % 输出层,2 个类别(假设信用评级为两类)
    softmaxLayer
    classificationLayer];

% 定义训练选项
options = trainingOptions('adam',... % 优化算法
    'MaxEpochs',100,... % 最大训练轮数
    'ValidationData',{valData, valLabels},... % 验证集数据
    'ValidationFrequency',10,... % 每 10 轮进行一次验证
    'Verbose',0,... % 是否显示训练过程
    'Plots','none');

% 训练模型
net = trainNetwork(trainData,trainLabels,layers,options);

% 在测试集上进行预测
predictedLabels = predict(net,testData);

% 计算准确率
accuracy = sum(predictedLabels == testLabels) / numel(testLabels);
disp(['测试集准确率: ', num2str(accuracy)]);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值