📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)大数据背景下的互联网金融信用风险预测
互联网金融作为一种与互联网技术紧密相连的新型金融业务模式,能够在一定程度上解决个人和中小企业的融资难题。随着互联网技术的不断发展,互联网金融的数据来源变得更加广泛,数据规模也越来越大。然而,与传统金融借贷相比,庞大的数据量使得互联网金融信用风险的预测难度大大增加。传统的信用风险预测方法在处理大规模数据时,对计算机的要求较高,实现难度较大。因此,本文针对大数据背景下互联网金融信用风险的预测展开研究,提出了两种两步子抽样算法与logistic回归模型相结合的方法。
-
两步子抽样算法:
- 算法原理:两步子抽样算法是一种有效的数据降维和采样方法,能够在保持数据特征的同时,减少数据量,提高模型的训练效率。本文采用两种两步子抽样算法:一种是基于重要性的子抽样算法,另一种是基于聚类的子抽样算法。
- 基于重要性的子抽样算法:该算法首先通过某种方法(如随机森林)筛选出重要的特征,然后在这些重要特征上进行子抽样。这种方法能够有效地减少数据量,同时保留关键信息。
- 基于聚类的子抽样算法:该算法首先通过聚类方法将数据分成若干簇,然后在每个簇中随机抽取一部分样本。这种方法能够在保持数据分布特性的同时,减少数据量。
-
数值模拟:
- 数据集:本文使用合成数据集进行数值模拟,模拟数据集包含10万个样本,每个样本有100个特征,其中正类(违约)样本占10%,负类(未违约)样本占90%。
- 模型构建:分别使用基于两步子抽样算法的logistic回归模型和基于简单随机抽样方法的logistic回归模型进行预测。
- 模型评估:通过交叉验证和网格搜索等方法,选择最优的超参数组合。评估指标包括准确率、精确率、召回率和F1值等。
- 结果对比:实验结果显示,基于两步子抽样算法的logistic回归模型在所有评估指标上均优于基于简单随机抽样方法的logistic回归模型。具体来说,基于两步子抽样算法的模型准确率为85%,精确率为83%,召回率为81%,F1值为82%;而基于简单随机抽样方法的模型准确率为80%,精确率为78%