📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)构建复杂金融事件的区块链复合链式模型
- 在信息技术蓬勃发展的当下,区块链技术在众多领域的应用日益广泛,金融领域尤甚。在金融领域中,海量的金融数据蕴含着巨大价值,对这些数据进行合理分类存储并挖掘其中有重大潜在价值的事件,对于信息技术融合以及数字经济的健康发展意义非凡。然而,金融时序数据存在规模大、场景复杂、类型多样、易篡改且溯源困难等棘手特性。近年来,利用区块链技术实现金融数据的高效存储和溯源成为学术界热议的焦点,同时也是该领域研究的重难点。区块链作为共享数据库,其数据具有不可伪造、全程留痕、可追溯、公开透明、集体维护等卓越特性,为 “可信” 和 “共识” 奠定了坚实基础。
- 但当前金融区块链系统大多采用平等挖矿模式,这种模式存在诸多问题。所有记账人(实体)将账本记录在单一主链上,使得数据存储呈现随机性。在复杂或分类金融场景下,主链数据难以按照关联或规律进行存储,这严重影响了存储及溯源效率。比如在处理包含多种金融产品交易、不同金融机构参与的复杂金融场景数据时,单一主链结构无法有效区分和存储不同类型的数据,导致后续查询和溯源困难重重。为解决这一问题,我们提出复杂金融事件的区块链复合链式模型。
- 首先,结合区块链不同应用模式和金融实体数据特性,在不同实体间构建联盟链,在实体内部构建私有链。对于不同金融机构之间,联盟链可以保证它们在一定规则下共享数据,同时保护各自的隐私。而实体内部的私有链则可以更安全地管理自身内部的业务数据。例如,一家大型银行内部的各个部门之间可以通过私有链进行数据管理,而该银行与其他金融机构之间则通过联盟链进行数据交互。
- 其次,分别建立基于 Merkle 树的私有链区块结构和基于 Merkle Patricia 树的联盟链区块结构。Merkle 树在私有链中可以高效地验证数据的完整性,确保数据在内部存储和传输过程中的准确性。Merkle Patricia 树则在联盟链环境下,更好地适应复杂的金融数据结构和查询需求,提高数据存储和检索的效率。
- 最后,给出区块链复合链式模型的数据层数据加密机制、网络层区块通信模式及共识层的区块共识算法。数据加密机制保障了金融数据的安全性,防止数据泄露和被恶意篡改。网络层的通信模式确保区块之间能够稳定、高效地传输数据,避免数据丢失或延迟。共识算法则让各个节点在数据存储和更新上达成一致,保证整个区块链系统的一致性和可靠性。通过这些措施,实现对金融实体数据的合理存储,为后续的溯源工作奠定坚实基础。
(2)提出区块链事件的关联实体溯源方法
- 现有单链模式在面对金融数据溯源问题时存在严重不足,它无法实现关联溯源。在复杂金融事件中,仅能查询到源区块是远远不够的,因为这无法识别金融实体间隐含的关联,这对于金融风险评估极为不利。例如,在金融欺诈事件中,如果不能找出与欺诈源相关联的其他实体,就无法全面评估风险范围和可能造成的损失。
- 为解决这一问题,我们提出区块链事件的关联实体溯源方法。首先,利用区块链自身可追溯的特性,追溯复杂金融事件中出现问题的源实体区块交易数据。这一步是溯源的基础,通过区块链的时间戳、哈希值等信息,可以沿着交易链条找到最初出现异常的交易记录所在的区块。
- 其次,引入 Apriori 关联规则算法。这种算法可以挖掘出与问题源实体有关联关系的其他实体区块交易数据。在金融数据中,不同实体之间的交易往往存在一定的关联模式,Apriori 算法能够发现这些隐藏的关联。例如,某些金融产品的交易可能与特定的投资者群体、金融机构相关联,当其中一个环节出现问题时,通过 Apriori 算法可以找出其他可能受到影响的相关实体。
- 最后,对所有溯源出的实体区块数据构造源事件关联图。这个关联图清晰地展示了复杂金融事件中实体间的关联关系。通过图形化的方式,金融监管人员或风险评估人员可以直观地看到各个实体之间是如何相互关联的,哪些实体处于核心位置,哪些实体可能只是间接受到影响,从而为进一步的分析和决策提供有力支持。
(3)基于强化学习的溯源实体风险评价模型
- 在复杂金融事件的处理中,仅仅完成溯源还不够,为了进一步降低不良影响,需要对溯源得到的实体进行风险评估。我们将源事件关联图中所有实体的区块数据表示成数值形式的特征向量。这些特征向量包含了实体在交易金额、交易频率、交易时间等多个维度的信息。例如,一个频繁进行大额交易且交易时间集中在特定时段的实体,其特征向量在相应维度上的值会反映出这种特殊情况。
- 基于这些特征向量,对溯源实体构建基于强化学习的风险评价模型。强化学习算法可以根据实体在复杂金融事件中的行为表现以及与其他实体的关联情况,学习和评估其风险水平。在这个模型中,设定不同的奖励和惩罚机制,根据实体的行为特征给予相应的反馈。例如,如果一个实体的交易行为与已知的高风险模式相似,模型会给予一个较高的风险评分,反之,如果其交易行为相对稳定且符合正常金融逻辑,则风险评分较低。通过这种方式,实现对溯源实体的全面、准确的风险评估,为金融机构和监管部门采取针对性的风险控制措施提供依据,从而有效降低复杂金融事件可能带来的损失,保障金融系统的稳定运行。
(4)实验验证与对比分析
- 在多个真实数据集上进行了大量实验,这些数据集涵盖了不同类型的金融交易场景,包括股票交易、债券发行、银行贷款等多种业务数据,以充分验证所提方法的有效性。同时,与目前几种主要的区块链存储和溯源方法进行对比。在存储开销方面,我们的方法通过复合链式模型的合理设计,有效减少了不必要的数据冗余,相比其他方法降低了一定比例的存储成本。例如,在处理大规模的金融交易记录时,不会像一些传统单链存储方法那样占用过多的存储空间。
- 在存储效率上,基于 Merkle 树和 Merkle Patricia 树的区块结构以及优化的数据层、网络层和共识层机制,使得数据存储速度更快。在实际测试中,对于大量金融数据的存储,我们的方法能够在更短的时间内完成,提高了金融数据的存储时效性。
- 在溯源准确率方面,通过关联实体溯源方法和源事件关联图的构建,能够更准确地找到与复杂金融事件相关的所有实体,避免了漏查或误查的情况。与其他方法相比,在复杂金融场景下的溯源准确率有显著提升。
- 在溯源效率上,利用区块链的特性结合 Apriori 算法等技术,能够快速追溯到相关实体,减少了不必要的搜索和计算时间。实验结果充分表明,我们所提方法在存储开销、存储效率、溯源准确率、溯源效率等方面具有明显优势,可高质量地完成金融数据的存储和溯源任务,为金融领域的风险管理和监管提供有力的技术支持。
金融实体 | 区块链类型 | 区块结构 | 交易数据量(笔) | 关联实体数量 |
---|---|---|---|---|
银行 A | 联盟链 | Merkle Patricia 树 | 5000 | 10 |
金融公司 B | 私有链 | Merkle 树 | 3000 | 8 |
信贷机构 C | 联盟链 | Merkle Patricia 树 | 4000 | 6 |
% 模拟金融实体的交易数据
transaction_amounts = [100, 200, 300, 400, 500]; % 交易金额
transaction_frequencies = [5, 8, 3, 6, 4]; % 交易频率
% 简单归一化处理(实际应用中可能需要更复杂的处理)
normalized_amounts = (transaction_amounts - min(transaction_amounts)) / (max(transaction_amounts) - min(transaction_amounts));
normalized_frequencies = (transaction_frequencies - min(transaction_frequencies)) / (max(transaction_frequencies) - min(transaction_frequencies));
% 构建特征向量(这里只是简单示例,实际可能包含更多维度)
feature_vector = [normalized_amounts; normalized_frequencies];
disp(feature_vector);