📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
1. 富时中国A50股指期货的价格发现功能
新加坡交易所于2006年9月5日推出富时中国A50股指期货,这是全球首只且唯一一只直接以中国A股股指为标的的境外金融衍生产品,也被认为是对中国A股市场具有重要影响的金融工具。在当前全球金融市场遭受新冠疫情带来的冲击,资产价格大幅波动的背景下,合理利用富时中国A50股指期货,有助于帮助投资者判断市场走势、对冲市场风险。本文首先对富时中国A50股指期货的价格发现功能进行了深入探讨。
-
价格引导关系:
- 研究方法:本文采用股指期货交易限制制度在不同“松绑”时期与新冠疫情下的多频数据,通过Granger因果检验对两个市场之间的价格引导关系进行检验,并基于PT模型与IS模型对价格发现的贡献度进行量化,最后通过DCC-GARCH模型研究价格的动态波动溢出效应。
- 研究结果:从价格引导关系上来看,两个市场的价格走势高度一致且存在长期均衡关系。Granger因果检验的结果表明,在股指期货“松绑”后,A50股指期货与股指现货在不同时期内交替主导对方走势。这表明,A50股指期货在市场信息传递和价格引导方面发挥了重要作用。
-
价格发现能力:
- 研究方法:本文通过PT模型与IS模型对价格发现的贡献度进行量化,并采用分位数回归方法进一步分析在极端情况下的价格发现能力。
- 研究结果:PT模型与IS模型的结果一致表明,两个市场的价格发现能力趋于一致。然而,分位数回归结果显示,在极端情况下,A50股指期货具有强于股指现货的价格发现能力。这表明,在市场剧烈波动时,A50股指期货能够更快速地反映市场信息,提供更准确的价格信号。
-
价格波动溢出效应:
- 研究方法:本文通过DCC-GARCH模型研究价格的动态波动溢出效应,分析两个市场在不同时间段内的动态相关性。
- 研究结果:两个市场在“松绑”后动态相关性趋同程度变高,市场之间的传导机制效率提升。选取新冠疫情期间多频数据的研究结果表明,两市场之间的动态相关性与时间跨度呈现倒“U”型结构变化趋势。这意味着,当投资者利用富时中国A50股指期货判断A50现货价格走势时,需要关注数据样本的时间跨度问题,在不同波动频率内采取不同的投资策略。
2. 富时中国A50股指期货的套期保值功能
在价格发现功能的基础上,本文进一步研究了富时中国A50股指期货在套期保值方面的应用。通过截取中美贸易战期间的数据作为样本内数据,同时选取新冠疫情时期的数据作为样本外数据,对比分析基于最小均值-方差和最小风险价值为目标的静态与动态模型,探讨如何利用A50股指期货对冲市场风险。
-
静态套期保值模型:
- 研究方法:本文采用OLS静态套期保值模型,以最小均值-方差为目标,对比其他套期保值模型的效果。
- 研究结果:以最小均值-方差为目标的OLS静态套期保值模型的效率高于其他套期保值模型。尽管该模型在组合收益方面表现一般,但在风险控制方面表现出色,适合风险厌恶型投资者。
-
动态套期保值模型:
- 研究方法:本文采用DCC-GARCH-MV动态套期保值模型,以最小风险价值为目标,对比不同动态模型的效果。
- 研究结果:DCC-GARCH-MV动态套期保值模型有更高的组合收益与更低的波动。以最小风险价值为目标的动态套期保值模型能够获得较高的组合收益,特别是DCC-GARCH-CVaR套期保值模型能够帮助投资者有效地减小投资风险。整体而言,VaR模型与CVaR模型体现了“高风险高收益”的投资思想,投资者可根据自身的风险承受能力采取不同的套期保值策略。
-
现货组合优化:
- 研究方法:本文创新性地引入人工智能算法求解现货组合各成分股的最优权重,采用改进的正弦余弦算法(SCA)进行优化。
- 研究结果:改进后的正弦余弦算法能够帮助投资者有效地构建现货组合,实现对A50股指期货带来的风险的有效对冲。通过优化现货组合,投资者可以在保持较高收益的同时,降低投资风险,提高投资组合的整体绩效。
3. 实证研究与应用
本文采用真实多维数据,运用多种实证模型,并基于人工智能算法开展交叉学科研究,丰富了富时中国A50股指期货与股指现货在价格发现与套期保值功能的研究。具体研究内容包括:
-
数据收集与处理:
- 数据来源:本文收集了富时中国A50股指期货和A50现货的历史交易数据,包括开盘价、收盘价、最高价、最低价和成交量等。
- 数据处理:对收集的数据进行清洗和预处理,去除无效和重复的数据,确保数据的质量。通过计算每日收益率、波动率等指标,为后续分析提供基础数据。
-
实证分析:
- 价格发现功能:通过Granger因果检验、PT模型、IS模型和DCC-GARCH模型,分析A50股指期货与A50现货之间的价格引导关系、价格发现能力和价格波动溢出效应。
- 套期保值功能:通过OLS静态套期保值模型、DCC-GARCH-MV动态套期保值模型和DCC-GARCH-CVaR动态套期保值模型,分析不同套期保值策略的效果,探讨如何利用A50股指期货对冲市场风险。
-
人工智能算法应用:
- 现货组合优化:本文采用改进的正弦余弦算法(SCA)求解现货组合各成分股的最优权重,通过优化现货组合,实现对A50股指期货带来的风险的有效对冲。
- 研究结果:改进后的正弦余弦算法能够帮助投资者有效地构建现货组合,提高投资组合的整体绩效。通过优化现货组合,投资者可以在保持较高收益的同时,降低投资风险。
日期 | A50股指期货收盘价 | A50现货收盘价 | A50股指期货日收益率 | A50现货日收益率 | A50股指期货波动率 | A50现货波动率 |
---|---|---|---|---|---|---|
2020-01-02 | 13000 | 12800 | 0.02 | 0.015 | 0.012 | 0.011 |
2020-01-03 | 13100 | 12900 | 0.008 | 0.007 | 0.011 | 0.010 |
2020-01-06 | 13200 | 13000 | 0.007 | 0.008 | 0.010 | 0.012 |
2020-01-07 | 13300 | 13100 | 0.008 | 0.007 | 0.011 | 0.011 |
2020-01-08 | 13400 | 13200 | 0.007 | 0.008 | 0.010 | 0.012 |
2020-01-09 | 13500 | 13300 | 0.008 | 0.007 | 0.011 | 0.011 |
2020-01-10 | 13600 | 13400 | 0.007 | 0.008 | 0.010 | 0.012 |
% 读取历史交易数据
data = readtable('historical_data.csv');
% 计算日收益率
data.A50FuturesReturn = diff(log(data.A50FuturesClose)) / log(data.A50FuturesClose(1:end-1));
data.A50SpotReturn = diff(log(data.A50SpotClose)) / log(data.A50SpotClose(1:end-1));
% 计算波动率
data.A50FuturesVolatility = std(data.A50FuturesReturn);
data.A50SpotVolatility = std(data.A50SpotReturn);
% Granger因果检验
function granger_causality_test(x, y, lags)
model1 = fitlm(lagmatrix(y, lags), x);
model2 = fitlm([lagmatrix(y, lags) lagmatrix(x, lags)], x);
f_stat = (model1.SSE - model2.SSE) / (model2.SSE / (length(x) - model2.NumCoefficients));
p_value = 1 - fcdf(f_stat, lags, length(x) - model2.NumCoefficients);
if p_value < 0.05
disp('Granger causality test: y causes x');
else
disp('Granger causality test: y does not cause x');
end
end
% 进行Granger因果检验
granger_causality_test(data.A50FuturesReturn, data.A50SpotReturn, 5);
% DCC-GARCH模型
function dcc_garch_model(x, y)
% 定义DCC-GARCH模型
model = arima('Constant', 0, 'DistributedLags', 1, 'Variance', garch(1,1));
[estMdlX,~,LogLX] = estimate(model, x);
[estMdlY,~,LogLY] = estimate(model, y);
% 计算残差
resX = infer(estMdlX, x);
resY = infer(estMdlY, y);
% 计算标准化残差
stdResX = resX ./ sqrt(infer(estMdlX, x));
stdResY = resY ./ sqrt(infer(estMdlY, y));
% 计算动态相关系数
dccModel = dcc(garch(1,1), 'Offset', 0, 'Constant', 0.01, 'GARCH', 0.9, 'ARCH', 0.09);
[dccEst,~,LogLDCC] = estimate(dccModel, [stdResX, stdResY]);
% 绘制动态相关系数
figure;
plot(dccEst.Corr1);
title('Dynamic Correlation between A50 Futures and A50 Spot');
xlabel('Time');
ylabel('Correlation');
end
% 运行DCC-GARCH模型
dcc_garch_model(data.A50FuturesReturn, data.A50SpotReturn);
% OLS静态套期保值模型
function ols_hedging_ratio(x, y)
% 计算OLS回归
b = regress(y, [ones(length(x), 1), x]);
hedging_ratio = b(2);
disp(['OLS Hedging Ratio: ', num2str(hedging_ratio)]);
end
% 运行OLS静态套期保值模型
ols_hedging_ratio(data.A50FuturesReturn, data.A50SpotReturn);
% DCC-GARCH-MV动态套期保值模型
function dcc_garch_mv_hedging(x, y)
% 定义DCC-GARCH模型
model = arima('Constant', 0, 'DistributedLags', 1, 'Variance', garch(1,1));
[estMdlX,~,LogLX] = estimate(model, x);
[estMdlY,~,LogLY] = estimate(model, y);
% 计算残差
resX = infer(estMdlX, x);
resY = infer(estMdlY, y);
% 计算标准化残差
stdResX = resX ./ sqrt(infer(estMdlX, x));
stdResY = resY ./ sqrt(infer(estMdlY, y));
% 计算动态相关系数
dccModel = dcc(garch(1,1), 'Offset', 0, 'Constant', 0.01, 'GARCH', 0.9, 'ARCH', 0.09);
[dccEst,~,LogLDCC] = estimate(dccModel, [stdResX, stdResY]);
% 计算动态套期保值比率
dynamic_hedging_ratio = dccEst.Corr1 .* (stdResX ./ stdResY);
disp(['DCC-GARCH-MV Dynamic Hedging Ratio: ', num2str(mean(dynamic_hedging_ratio))]);
end
% 运行动态套期保值模型
dcc_garch_mv_hedging(data.A50FuturesReturn, data.A50SpotReturn);