RFM改进与Two-Step层次聚类在互联网金融用户细分中的应用研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1) 随着互联网金融的迅速发展,互联网金融平台用户的投资和赎回行为日益复杂,传统的用户价值评价模型已无法全面有效地描述这些新兴金融行为特征。为了适应互联网金融的用户特征,本文在传统RFM模型(Recency, Frequency, Monetary)基础上进行了改进,增加了用户赎回行为的考虑,构建了新的RFFM模型(Recency, Frequency, Financial, Monetary)。在改进的模型中,R(Recency)表示用户最近一次交易的时间间隔,F(Frequency)表示用户交易的频次,F(Financial)表示用户赎回的金额占投资金额的比重,M

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值