融合多模态与模糊推理的可解释性机器学习股价预测模型研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)直觉模糊预测模型(IFIM)的构建与性能提升

在股票价格预测领域,传统的模糊学习模型由于计算效率低下和参数指数增长的问题,限制了其在实际金融市场中的应用。为了解决这一问题,本文提出了一种直觉模糊预测模型(IFIM),该模型通过嵌入机器学习拟合模型替代传统的模糊规则推理方式,有效提升了模型的计算效率。IFIM模型利用数据驱动方法构造直觉模糊集,充分挖掘输入数据的潜在信息和数据间的关联信息,从而提高了预测的准确率。在公开的A股股票数据集上的实验结果表明,IFIM模型与嵌入的机器学习拟合模型相比,收益率提高了20%~40%,与其他模糊学习模型相比,具有更高的模型收益率和较低的回撤,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值