📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1) 研究了机器学习中的特征选择与聚类算法,抽取在客户行为分析中影响较大的特征变量,提出了利用K-means聚类算法对客户进行聚类分析的方法。在金融大数据背景下,客户的行为模式、消费习惯、信用状况等信息对于银行来说具有重要的商业价值。为了从海量数据中提取有价值的信息,本文首先对银行数据库中的客户个人信息、交易信息、账户资产信息等进行了全面的特征选择,筛选出与客户行为密切相关的特征变量,如交易频率、平均交易金额、账户余额波动等。接着,本文选择了K-means聚类算法作为客户分群的主要工具,因为该算法简单易用,且能有效处理大规模数据集。在具体实施过程中,本文分别设置了聚类个数k为5、6、7三种情况,通过多次实验对比分析,发现当k=5时,聚类的平均准确率最高,