投资组合选择中的在线算法与反转效应及动量效应研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1)在线投资组合问题的背景与研究出发点

 

投资决策的关键在于在不确定环境下挑选最优资产组合进行投资。金融市场极为复杂,投资者面临环境的持续变化,以收益最大化为目标的投资者需在对未来一无所知的情况下,依据当前环境不断调整策略,所以投资组合选择是在线决策问题。以 Markowitz 均值 - 方差模型为基础的现代投资组合理论多在静态情形下研究,动态情形成果较少。随着在线学习算法的广泛应用,在线算法用于投资组合选择问题研究,推动了在线投资组合理论发展,但泛证券投资组合方法不考虑或很少考虑证券市场运动规律,导致实验效果和应用价值不佳。本文从市场 “异象” 角度出发,借助在线学习算法深入研究投资组合问题。

(2)基于反转和动量现象的反转在线投资策略

现有启发式算法的问题

 

已有启发式算法仅考虑证券的反转现象,完全忽视动量现象。这在实践中会导致收益不佳,并且其结果严重依赖于历史窗口大小取值。为消除窗口大小影响需大量复合运算,使得方法时效性降低。比如在实际市场中,只关注反转可能会错过因动量带来的投资机会,而且不同的历史窗口选择可能会得出差异很大的投资策略,使投资者难以抉择。

本文的改进与策略构建

 

本文综合考虑反转和动量两种现象,构建相关关系指标来度量策略转移比例。通过深入分析相关程度强弱对决策转移的影响,借助启发式算法更全面地把握市场运动规律,进而得出在线投资组合策略。这种策略能够更好地适应市场变化,不会因单一考虑反转而错失动量带来的收益机会。例如,在上涨或下跌趋势明显的市场中,动量因素可能起到关键作用,而在市场趋势反转时,反转因素又能指导投资。

实证分析与策略稳定性

 

利用国外不同金融市场的六个数据集和国内两市的四个数据集进行实证分析。结果显示在国外金融市场收益显著提高,在国内证券市场上累计收益不显著依赖窗口大小。这表明所得策略是稳定的,无论是在国际市场还是国内市场,都能有效发挥作用,为投资者提供更可靠的投资指导,降低因市场波动和策略不稳定带来的风险。

(3)基于均值回归非对称性的在线投资组合策略 PACS

PA 分类算法的局限

 

建立在 PA 分类算法基础上的在线投资组合策略简单利用均值回归理论,难以准确刻画市场运动规律。在复杂的金融市场中,市场波动并非简单遵循均值回归,可能存在各种复杂的变化和不对称性,如果不能准确捕捉这些特征,投资策略可能会失效。

多分段损失函数与策略优化

 

依据均值回归的非对称性,本文设计了多分段损失函数,旨在更准确地捕捉金融市场波动特征。在损失最小约束条件下,利用该函数构建优化模型,寻求变化最小的投资比例。通过这种方式,可以使投资策略更好地适应市场波动,减少不必要的调整。例如,在市场波动剧烈但有一定均值回归趋势的情况下,多分段损失函数能够更精细地调整投资组合。

算法推导与不同市场情形分析

 

进一步利用最优化原理推导出在线算法,得到适用于不同市场情形的反转策略。在允许卖空情形下得到算法的损失界,同时在不允许卖空情形下考察交易费用对策略的影响。理论上,算法具有线性时间复杂度,这使得它在计算上高效,能够快速处理大量数据。通过实证分析发现该算法在多数市场上的收益有显著提高,证明了其在实际应用中的实用性和可操作性,投资者可以利用该算法在不同市场条件下优化投资组合,提高收益。

(4)基于权重函数的多期在线投资组合模型与策略

单期在线投资问题的不足

 

现有的单期在线投资问题研究在调整策略时会给算法带来较大盲目性,导致错失绝大部分历史数据信息。在实际投资中,只关注当前而忽略历史数据,就像在黑暗中摸索,无法全面了解市场趋势和规律,可能做出错误的投资决策。

权重函数与加权平均价格序列

 

本文以充分利用历史数据信息又不带来过大计算量为出发点展开多期研究。以离当期时间越近赋权越大为原则构建权重函数,得到移动窗口下的加权平均价格序列。这种方式能够更合理地利用历史数据,使近期数据在决策中发挥更重要的作用,同时又不会因过多历史数据而使计算过于复杂。例如,对于长期投资者来说,可以通过这种方式更好地结合长期趋势和近期市场变化来调整投资组合。

优化模型与在线投资组合算法

 

在此基础上构造损失函数,并从两个方面建立优化模型。一方面直接优化投资组合策略;另一方面,建立在预测未来价格基础上,利用 PA 分类算法和优化原理推导出加权移动平均的在线投资组合算法,并得到不同形式的反转策略。进一步地,将行为金融学中反转的时间区间作为边侧信息,确定历史窗口大小,降低算法时间复杂度。算法具有线性时间复杂度,利于大规模计算,在实证研究中也获得了优异的收益,为投资者在多期投资中提供了更有效的策略选择。

(5)基于动量效应和投资者心理预期的动量在线投资策略

现有方法在动量效应市场的不足

 

上述方法多利用反转特征,无法有效解决动量效应市场的投资决策问题。在动量效应明显的市场中,反转策略可能会导致投资者错失获利机会,因为市场趋势是持续的,与反转市场的行为完全不同。

不敏感损失函数与策略构建

 

本文提出根据证券市场 “异象” 特征灵活设计投资策略的思路,将动量效应和投资主体主观态度相结合构建不敏感损失函数,利用 PA 分类算法建立优化模型,得到保守策略和动量策略的转换机制。这种策略能够根据市场是动量效应还是反转效应自动调整,例如在牛市中,动量策略可以充分利用市场上涨趋势获取收益。

算法复杂度与实证分析

 

算法具有线性时间复杂度,易于实现和计算。将该策略运用于国内外不同证券市场进行比较分析,发现该策略在动量效应金融市场上收益很好,而对于反转效应的金融市场收益几乎为零。这表明该策略适用于动量效应的金融市场,是在线反转策略的有益补充,为投资者在不同市场特征下的投资提供了更全面的选择。

# 导入必要的库
import numpy as np
import pandas as pd

# 1. 基于反转和动量现象的反转在线投资策略相关代码

# 计算反转和动量相关关系指标(这里是简化示例,实际计算更复杂)
def calculate_relation_index(price_data, window_size):
    reversal_data = price_data.diff(window_size)
    momentum_data = price_data.pct_change(window_size)
    relation_index = np.corrcoef(reversal_data, momentum_data)[0][1]
    return relation_index

# 启发式算法得到投资策略(简单示例)
def heuristic_algorithm(relation_index, price_data):
    if relation_index > 0.5:
        # 这里假设根据关系指标调整投资比例,实际需要更详细策略
        investment_strategy = np.ones_like(price_data) * 0.6
    else:
        investment_strategy = np.ones_like(price_data) * 0.4
    return investment_strategy

# 数据加载和处理(模拟数据加载)
def load_data():
    # 模拟国外金融市场数据
    foreign_data = pd.DataFrame(np.random.rand(100, 6), columns=['market1', 'market2','market3','market4','market5','market6'])
    # 模拟国内金融市场数据
    domestic_data = pd.DataFrame(np.random.rand(100, 4), columns=['market1', 'market2','market3','market4'])
    return foreign_data, domestic_data

# 实证分析主函数
def empirical_analysis_reversal():
    foreign_data, domestic_data = load_data()
    for market in foreign_data.columns:
        relation_index_foreign = calculate_relation_index(foreign_data[market], 10)
        strategy_foreign = heuristic_algorithm(relation_index_foreign, foreign_data[market])
        # 这里可以计算收益等指标(简单示例省略)
        print(f"国外市场 {market} 策略收益情况(模拟)")
    for market in domestic_data.columns:
        relation_index_domestic = calculate_relation_index(domestic_data[market], 10)
        strategy_domestic = heuristic_algorithm(relation_index_domestic, domestic_data[market])
        # 这里可以计算收益等指标(简单示例省略)
        print(f"国内市场 {market} 策略收益情况(模拟)")

# 2. 基于均值回归非对称性的在线投资组合策略 PACS 相关代码

# 构建多分段损失函数(这里是简单示例,实际根据均值回归非对称性设计更复杂)
def multi_segment_loss_function(price_data, investment_proportion, threshold1, threshold2):
    loss = 0
    diff = price_data.pct_change() - investment_proportion
    for i in range(len(diff)):
        if diff[i] < -threshold2:
            loss += (diff[i] + threshold2) ** 2
        elif -threshold2 <= diff[i] < -threshold1:
            loss += (diff[i] + threshold1) ** 2
        elif -threshold1 <= diff[i] < threshold1:
            loss += diff[i] ** 2
        elif threshold1 <= diff[i] < threshold2:
            loss += (diff[i] - threshold1) ** 2
        else:
            loss += (diff[i] - threshold2) ** 2
    return loss

# 利用 PA 分类算法优化投资组合策略(这里简化示例,实际需要完整 PA 算法实现)
def optimize_strategy_pa(price_data, loss_function):
    # 假设简单调整投资比例来优化
    optimized_proportion = np.ones_like(price_data) * 0.5
    return optimized_proportion

# 主函数演示策略
def empirical_analysis_pacs():
    price_data = pd.Series(np.random.rand(100))
    loss = multi_segment_loss_function(price_data, np.ones_like(price_data) * 0.5, 0.1, 0.2)
    optimized_strategy = optimize_strategy_pa(price_data, loss)
    print("PACS 策略模拟收益情况(模拟,实际需详细计算)")

# 3. 基于权重函数的多期在线投资组合模型与策略相关代码

# 构建权重函数
def build_weight_function(window_size):
    weights = np.arange(window_size, 0, -1)
    weights = weights / np.sum(weights)
    return weights

# 计算加权平均价格序列
def weighted_average_price(price_data, window_size):
    weights = build_weight_function(window_size)
    weighted_price = np.convolve(price_data, weights, mode='valid')
    return weighted_price

# 构建损失函数(这里简单示例)
def loss_function_weighted(weighted_price, investment_proportion):
    return np.sum((weighted_price - investment_proportion) ** 2)

# 优化投资组合策略(简单示例)
def optimize_weighted_strategy(weighted_price):
    return np.mean(weighted_price)

# 主函数演示多期策略
def empirical_analysis_weighted():
    price_data = np.random.rand(100)
    weighted_price = weighted_average_price(price_data, 10)
    loss = loss_function_weighted(weighted_price, np.mean(weighted_price))
    optimized_strategy = optimize_weighted_strategy(weighted_price)
    print("加权多期策略模拟收益情况(模拟,实际需详细计算)")

# 4. 基于动量效应和投资者心理预期的动量在线投资策略相关代码

# 构建不敏感损失函数(这里是简单示例,根据动量和心理预期设计更复杂)
def insensitive_loss_function(momentum_data, investment_proportion, attitude_factor):
    return np.sum((momentum_data - attitude_factor * investment_proportion) ** 2)

# 利用 PA 分类算法建立优化模型(简化示例)
def optimize_momentum_strategy(momentum_data, loss_function):
    return np.mean(momentum_data)

# 主函数演示动量策略
def empirical_analysis_momentum():
    momentum_data = np.random.rand(100)
    loss = insensitive_loss_function(momentum_data, np.ones_like(momentum_data) * 0.5, 0.8)
    optimized_strategy = optimize_momentum_strategy(momentum_data, loss)
    print("动量策略模拟收益情况(模拟,实际需详细计算)")

# 执行各种策略的实证分析
empirical_analysis_reversal()
empirical_analysis_pacs()
empirical_analysis_weighted()
empirical_analysis_momentum()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值