信用评分卡模型中逻辑回归与机器学习方法的优化研究【附数据】

📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建

✨ 专业领域:

金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用


💡 擅长工具:

Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导


📚 内容:

金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
 

具体问题可以私信或查看文章底部二维码

✅ 感恩科研路上每一位志同道合的伙伴!

(1) 东南亚互联网金融市场背景与信用评分需求

东南亚地区因其庞大的人口基数和互联网行业的快速发展,成为互联网金融的新兴市场。与个人征信覆盖率高达90%的欧美国家相比,东南亚国家的银行账户渗透率较低,导致大量人群未被传统征信体系覆盖,从而对网络借贷平台产生巨大需求。在面对申请人不全面的数据和空白的信用记录时,构建高效的风控模型成为风险评估人员亟待解决的问题。东南亚地区的贷前风险评估方式主要分为人工审核和机器审核两种方式,其中人工审核效率和准确率较低,而机器审核则通过信用评分方式预测借款人的违约概率,进而转化为信用评分,为信贷审批提供决策依据

(2) 信用评分模型的开发流程与方法

信用评分模型的开发流程包括数据获取、数据预处理、探索性数据分析、变量选择、模型开

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值