📊 物联网技术与数据分析 | 物联网系统设计 | 模型构建
✨ 专业领域:
物联网系统架构设计
智能设备与传感器网络
数据采集与处理
物联网大数据分析
智能家居与工业物联网
边缘计算与云计算
物联网安全与隐私保护
💡 擅长工具:
Python/R/Matlab 数据分析与建模
物联网平台与设备编程
数据流与实时监控系统设计
机器学习与预测模型应用
物联网协议(MQTT, CoAP, HTTP)
物联网数据可视化工具
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
一、异构物联网边缘云资源标识映射与统一描述方法
(一)资源标识映射方法
- 在大规模异构物联网环境中,各类设备和资源遵循不同的标识标准,这给统一管理带来了巨大挑战。为解决此问题,提出的异构物联网边缘云资源标识映射方法旨在建立一种兼容机制。首先,对现有的物联网标识标准进行全面梳理,如 EPC(电子产品代码)、IPv6 地址、MAC 地址等,分析其结构和编码规则。然后,设计一个中间转换层,通过制定映射表和转换算法,将不同标识标准的资源映射为边缘云系统能够统一识别和管理的内部标识。例如,对于接入的 EPC 编码设备,提取其关键信息段,按照预定的规则生成对应的边缘云内部唯一标识,并存入标识映射数据库。这样,当边缘云需要对设备进行管理和调度时,无需关注其原始标识类型,直接使用内部标识即可,大大提高了资源管理的效率和统一性,避免了因标识不一致导致的管理混乱和数据交互障碍。
- 为确保映射方法的准确性和可靠性,在映射过程中引入校验机制。对转换后的内部标识进行校验码计算,并与预设的校验规则进行比对,确保标识在转换过程中未出现错误。同时,建立标识更新机制,当设备的原始标识发生变化(如因网络配置更新导致的 IP 地址变更)时,能够及时同步更新边缘云内部标识,保证标识映射的实时性和一致性,使边缘云系统始终能够准确地定位和管理每一个物联网资源。
(二)资源统一描述方法
- 对资源的行为和属性进行抽象分类是实现资源统一描述的关键步骤。首先,将物联网资源的行为分为数据采集、数据传输、数据处理、控制执行等几大类,属性则包括设备类型、通信协议、数据格式、计算能力、存储容量等多个维度。针对每一类行为和属性,制定统一的描述模板和术语集。例如,对于数据采集行为,描述模板包括采集频率、采集的数据类型(如温度、湿度、图像等)、采集精度等字段;对于设备类型属性,使用标准化的分类术语,如传感器类、执行器类、网关类等。通过这种方式,将不同异构资源的复杂多样的描述信息转换为具有统一结构和语义的描述格式,屏蔽了异构资源描述的差异性。
- 为了实现资源描述信息的有效共享和交互,采用轻量级的数据交换格式,如 JSON 或 XML,来存储和传输资源统一描述信息。在边缘云系统中,建立资源描述数据库,存储所有接入资源的统一描述信息。当不同边缘云之间需要进行资源共享或协同工作时,能够快速准确地获取对方资源的关键信息,无需进行复杂的格式解析和语义理解,从而为资源在各边缘云的高效共享和协同利用提供了有力支撑,降低了跨边缘云资源管理和调度的复杂性。
二、边云协同的访问控制机制设计
(一)面向边云协同的系统管理访问控制机制
- 在各边缘云系统面临的非法访问安全威胁下,基于角色的访问控制(RBAC)方法是一种有效的解决方案。首先,对边云协同系统中的管理角色进行层次化划分,如分为超级管理员、区域管理员、普通管理员、操作员等不同级别,每个级别具有不同的管理权限和操作范围。例如,超级管理员拥有对整个边缘云系统的所有资源和功能的最高权限,包括用户管理、资源配置、系统监控等;区域管理员则负责特定区域内的资源管理和用户权限分配;普通管理员和操作员的权限则进一步受限,只能执行特定的日常管理任务,如设备状态查询、数据备份等。
- 为了实现 RBAC 机制,建立角色权限数据库,存储每个角色与相应权限的映射关系。当用户登录边云协同系统时,根据其所属角色从数据库中获取对应的权限列表,并在用户的操作过程中进行实时权限验证。例如,当一个普通管理员试图执行超出其权限范围的系统配置操作时,系统会立即拦截该操作,并提示用户权限不足,从而有效防止非法访问和越权操作,保障了边缘云系统的安全性和稳定性。同时,为了适应边云协同环境下的动态管理需求,定期对角色权限进行审查和更新,根据业务发展和安全策略的变化,及时调整角色与权限的对应关系,确保访问控制机制的有效性和适应性。
(二)边云协同的资源动态细粒度自适应访问控制方法
- 针对平台资源分散化存储管理问题,基于属性的访问控制(ABAC)方法能够提供更灵活、细粒度的访问控制能力。首先,对资源和用户的属性进行全面定义和分类,资源属性包括资源类型、所属项目、安全级别、数据敏感度等,用户属性则包括用户身份、所在部门、工作职能、访问历史等。然后,根据资源和用户的属性信息,制定访问控制策略。例如,对于一个安全级别为高的敏感数据资源,只有具有特定身份(如高级数据分析师)且所属部门与该资源相关的用户,在满足一定的访问条件(如经过多重身份验证、在特定的工作时间段内)时,才被允许访问该资源。
- 为了实现资源访问控制的动态适应性,建立实时监测和评估机制。系统实时监测资源的使用情况、用户的行为模式以及网络环境等因素的变化,根据这些变化动态调整访问控制策略。例如,当检测到某个资源的访问频率突然增加且来自异常的 IP 地址范围时,系统自动提高该资源的访问门槛,增加身份验证的强度,或者限制某些可疑用户的访问权限,从而有效防范潜在的安全威胁,保障资源的安全共享和合法使用。同时,通过机器学习算法对历史访问数据进行分析,不断优化访问控制策略,使其能够根据不同的场景和用户行为自动做出合理的访问决策,实现资源动态细粒度自适应访问控制,提高边云协同平台的安全性和资源管理的智能化水平。
三、面向差异化任务的边云协同方法与平台实现
(一)面向差异化任务的边云协同方法
- 根据请求任务的重要性和响应比信息定义任务的综合优先级是实现高效资源调度的核心。首先,确定任务重要性的评估指标,如任务的紧急程度、对系统关键性能指标的影响程度、所涉及的数据的价值等,为每个指标分配相应的权重,通过加权计算得出任务的重要性得分。同时,结合任务的响应比信息,即任务的等待时间与执行时间的比值,来综合考虑任务的优先级。例如,对于一个紧急的工业控制任务,其重要性得分较高,且如果其已经在等待队列中等待了较长时间,响应比较大,则其综合优先级会被提升到较高的位置。
- 基于任务的综合优先级,设计动态资源分配策略。在边缘云系统和云计算中心的资源池中,根据任务的优先级动态分配计算、网络和存储资源。对于高优先级的任务,优先分配资源充足、性能优越的计算节点和高速网络带宽,确保其能够快速获得执行资源并得到及时处理。同时,为了避免低优先级任务的饥饿问题,采用资源预留和动态调整机制。例如,为低优先级任务预留一定比例的资源,当高优先级任务执行完毕释放资源后,及时将这些资源分配给等待时间较长的低优先级任务,实现资源的公平分配和高效利用,提高整个系统的任务处理效率和服务质量,在大规模异构物联网场景下能够有效应对复杂多变的任务需求,保障系统的稳定运行和服务的高质量提供。
(二)边云协同物联网平台实现
- 设计并实现的面向大规模异构场景的边云协同物联网平台具备多项关键功能。在标识映射功能方面,通过上述的资源标识映射方法,实现对各类异构物联网设备和资源的统一标识管理,为平台的其他功能模块提供了基础支撑。资源描述功能则利用资源统一描述方法,将所有接入资源的详细信息以标准化的格式存储和管理,方便平台进行资源查询、调度和共享。节点动态接入功能允许各类物联网设备在不同的网络环境和条件下灵活地接入边缘云系统,通过自动发现和配置机制,快速完成设备的注册和初始化,实现设备的即插即用,提高了平台的可扩展性和适应性。
- 节点发现功能基于分布式的节点搜索算法,能够在大规模异构网络中快速定位和发现特定的物联网节点,方便用户对设备进行管理和监控。权限管理功能整合了上述的系统管理访问控制机制和资源动态细粒度自适应访问控制方法,实现对用户和资源的全方位、多层次的权限管理,保障平台的安全性。数据分布式存储功能采用分布式文件系统和数据库技术,将海量的物联网数据分散存储在多个边缘云和云计算中心的存储节点上,通过数据冗余和一致性算法,确保数据的可靠性和可用性,同时提高了数据的读写性能。边云协同任务处理功能则基于面向差异化任务的边云协同方法,实现任务在边缘云和云计算中心之间的智能调度和协同执行,充分发挥边缘计算和云计算的优势,提高系统的整体性能和服务质量。通过对平台的性能测试,单个边缘云能够支持 700TPS 的并发量,平均响应时间为 300ms,满足客户端对平台服务质量的要求,并且已在智慧园区、智能安防、环境监测等领域得到实际应用,验证了所研究技术和方法的有效性和实用性,为大规模异构物联网的发展提供了有力的支持和保障。
# 资源标识映射示例代码
# 假设已有不同标识标准的资源列表,这里简化为字典形式,实际可能从数据库或其他数据源获取
resources = {
"device1": {"original_id": "EPC12345", "type": "sensor", "protocol": "MQTT"},
"device2": {"original_id": "IPv6:2001:0db8:85a3:0000:0000:8a2e:0370:7334", "type": "actuator", "protocol": "CoAP"},
"device3": {"original_id": "MAC:00:11:22:33:44:55", "type": "gateway", "protocol": "HTTP"}
}
# 定义标识映射字典
id_mapping = {}
# 实现 EPC 标识到内部标识的映射函数
def map_epc_id(epc_id):
# 这里简单地取 EPC 码的后三位作为内部标识,实际应采用更复杂可靠的映射算法
internal_id = "INT_" + epc_id[-3:]
return internal_id
# 实现 IPv6 标识到内部标识的映射函数
def map_ipv6_id(ipv6_id):
# 取 IPv6 地址的最后一段作为内部标识,同样实际应优化
internal_id = "INT_" + ipv6_id.split(':')[-1]
return internal_id
# 实现 MAC 标识到内部标识的映射函数
def map_mac_id(mac_id):
# 取 MAC 地址的后两位作为内部标识,需改进
internal_id = "INT_" + mac_id[-2:]
return internal_id
# 对资源列表进行标识映射
for device_id, device_info in resources.items():
original_id = device_info["original_id"]
if original_id.startswith("EPC"):
internal_id = map_epc_id(original_id)
elif original_id.startswith("IPv6"):
internal_id = map_ipv6_id(original_id)
elif original_id.startswith("MAC"):
internal_id = map_mac_id(original_id)
else:
print(f"Unrecognized ID format for device {device_id}")
continue
id_mapping[device_id] = internal_id
print(id_mapping)
# 资源统一描述示例代码
# 定义资源描述模板类
class ResourceDescription:
def __init__(self, device_type, protocol, data_format, behavior):
self.device_type = device_type
self.protocol = protocol
self.data_format = data_format
self.behavior = behavior
# 创建资源描述实例
sensor_description = ResourceDescription(
device_type="Temperature Sensor",
protocol="MQTT",
data_format="JSON",
behavior="Data Collection"
)
actuator_description = ResourceDescription(
device_type="Light Actuator",
protocol="CoAP",
data_format="Binary",
behavior="Control Execution"
)
# 将资源描述转换为 JSON 格式以便存储和传输
import json
sensor_json = json.dumps(sensor_description.__dict__)
actuator_json = json.dumps(actuator_description.__dict__)
print(sensor_json)
print(actuator_json)
# 基于角色的访问控制示例代码
# 定义角色和权限字典
roles_permissions = {
"super_admin": ["*"], # 拥有所有权限,用 * 表示
"area_admin": ["resource_manage", "user_manage", "monitor"],
"normal_admin": ["query", "backup"],
"operator": ["read_only"]
}
# 模拟用户登录并获取其角色
user_role = "area_admin"
# 检查用户是否具有特定权限
def check_permission(user_role, permission):
if permission in roles_permissions[user_role]:
return True
else:
return False
# 测试权限检查
if check_permission(user_role, "resource_manage"):
print("User has permission to manage resources.")
else:
print("User does not have permission to manage resources.")
# 基于属性的访问控制示例代码
# 定义资源属性字典
resource_attributes = {
"data1": {"type": "sensitive", "project": "ProjectA", "security_level": "high"},
"data2": {"type": "public", "project": "ProjectB", "security_level": "low"}
}
# 定义用户属性字典
user_attributes = {
"user1": {"identity": "analyst", "department": "DataAnalysis", "access_history": []},
"user2": {"identity": "developer", "department": "Development", "access_history": []}
}
# 定义访问控制策略函数
def access_control(resource, user):
if user_attributes[user]["department"] == resource_attributes[resource]["project"] and \
user_attributes[user]["identity"] == "analyst" and \
resource_attributes[resource]["security_level"] == "high":
return True
else:
return False
# 测试访问控制
if access_control("data1", "user1"):
print("User1 has access to data1.")
else:
print("User1 does not have access to data1.")
# 面向差异化任务的边云协同任务调度示例代码
# 定义任务类
class Task:
def __init__(self, name, importance, waiting_time, execution_time):
self.name = name
self.importance = importance
self.waiting_time = waiting_time
self.execution_time = execution_time
# 计算响应比
self.response_ratio = waiting_time / execution_time if execution_time > 0 else float('inf')
# 计算综合优先级,简单地将重要性和响应比相加,实际应采用更合理的加权算法
self.priority = importance + self.response_ratio
# 创建任务列表
tasks = [
Task("Task1", 5, 2, 3),
Task("Task2", 3, 5, 2),
Task("Task3", 7, 1, 4)
]
# 根据综合优先级对任务进行排序
sorted_tasks = sorted(tasks, key=lambda x: x.priority, reverse=True)
for task in sorted_tasks:
print(f"Task: {task.name}, Priority: {task.priority}")