📊 金融数据分析与建模专家 金融科研助手 | 论文指导 | 模型构建
✨ 专业领域:
金融数据处理与分析
量化交易策略研究
金融风险建模
投资组合优化
金融预测模型开发
深度学习在金融中的应用
💡 擅长工具:
Python/R/MATLAB量化分析
机器学习模型构建
金融时间序列分析
蒙特卡洛模拟
风险度量模型
金融论文指导
📚 内容:
金融数据挖掘与处理
量化策略开发与回测
投资组合构建与优化
金融风险评估模型
期刊论文
✅ 具体问题可以私信或查看文章底部二维码
✅ 感恩科研路上每一位志同道合的伙伴!
(1)非线性滤波方法的系统性研究及改进算法
在贝叶斯理论框架下,对非线性滤波方法展开了系统性的探究。粒子滤波在处理非线性、非高斯时变系统状态滤波与参数估计方面虽有独特优势,但粒子退化、样本枯竭等问题限制了其发展与应用。
为此提出了一种改进的粒子滤波算法 ——APF-IEKF(Auxiliary particle filter with iterated extended Kalman filter),它是在辅助粒子滤波的基础上融合了迭代扩展卡尔曼滤波。在选取重要密度函数时,充分考量当前时刻的量测,进而让粒子的分布能更贴近状态后验概率分布。通过仿真结果可以看到,该方法在估计精度方面表现得比其他非线性滤波方法更为出色,而且运行时间相较于 PF-UKF(par