基于逐次变分模态分解(SVMD)联合小波阈值去噪

代码原理

逐次变分模态分解 (Iterative Variational Mode Decomposition, IVMD) 是一种信号分解方法,它可以将一个时域信号分解为若干个本征模态函数(Intrinsic Mode Functions, IMF)。它通过迭代寻找信号的本征模态函数和残差部分,直到达到收敛的分解结果。

联合小波阈值去噪是一种常用的信号去噪方法,它利用小波变换将信号转换到频域,并在频域对信号进行阈值处理,将小于阈值的高频成分置零,以实现对噪声成分的抑制。

基于逐次变分模态分解联合小波阈值去噪的思想是将逐次变分模态分解和联合小波阈值去噪相结合。首先,使用逐次变分模态分解将信号分解为多个本征模态函数。然后,对每个本征模态函数应用联合小波阈值去噪的方法,通过选择合适的阈值将噪声成分去除。

这种方法的优势在于可以利用逐次变分模态分解的特点,将信号的不同成分分离开来,并分别进行阈值处理。这样可以更好地适应信号的复杂性和噪声分布情况,提高去噪效果。然而,具体的实现方法和参数选择还需要根据具体的应用场景进行调整和优化。

去噪流程图

效果图

本文代码:阿里云盘分享 (aliyundrive.com)

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复SVMD去噪

本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB科研小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值