基于双向门控循环单元(Bi-GRU)的数据回归预测

代码原理

双向门控循环单元(BI-GRU)是一种强大的深度学习模型,常用于时间序列预测和数据回归任务。以下是关于基于BI-GRU进行数据回归预测的简要介绍和步骤:

1. 模型概述

BI-GRU结合了双向和门控机制,使得模型能够更好地捕捉序列数据中的上下文信息。与传统的RNN相比,GRU在处理长序列时更具优势,因为它采用了门控机制来控制信息的流动。

2. 数据准备

  • 数据收集:收集相关的时间序列数据,确保数据具有代表性。
  • 数据预处理:①缺失值处理②特征选择③标准化

3. 模型构建

  • 输入层:根据输入数据的特征维度设计输入层。
  • 双向GRU层:使用双向GRU来提取特征,可以通过设置多个GRU层来增加模型复杂度。
  • 全连接层:将GRU层的输出传递给全连接层,以进行回归任务。
  • 输出层:通常为单个神经元,用于输出预测结果。

4. 模型训练

  • 损失函数:常用均方误差(MSE)来评估回归模型的性能。
  • 优化器:可以选择Adam或SGD等优化器来训练模型。
  • 超参数调整:根据验证集的表现调整超参数,如学习率、批大小等。

5. 模型评估

  • 使用测试集评估模型性能,计算常用指标如MSE、MAE等。
  • 可视化预测结果与真实值的对比,分析模型表现。

6. 预测与应用

  • 训练完成后,可以使用模型对新数据进行预测。
  • 在实际应用中,模型可以部署到生产环境中进行实时预测。

部分代码

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc  
%% 导入数据
data =  readmatrix('回归数据集.xlsx');
data = data(:,1:14);
res=data(randperm(size(data,1)),:);    %此行代码用于打乱原始样本,使训练集测试集随机被抽取,有助于更新预测结果。
num_samples = size(res,1);   %样本个数
% 训练集和测试集划分
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);
[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
%  格式转换
for i = 1 : M 
    vp_train{i, 1} = p_train(:, i);
    vt_train{i, 1} = t_train(:, i);
end
for i = 1 : N 
    vp_test{i, 1} = p_test(:, i);
    vt_test{i, 1} = t_test(:, i);
end
%% 网络搭建
lgraph = layerGraph();
% 添加层分支
% 将网络分支添加到层次图中。每个分支均为一个线性层组。
tempLayers = sequenceInputLayer(f_,"Name","sequence");
lgraph = addLayers(lgraph,tempLayers);
tempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);
tempLayers = gruLayer(15,"Name","gru1");
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
    FlipLayer("flip3")
    gruLayer(15,"Name","gru2")];
lgraph = addLayers(lgraph,tempLayers);
tempLayers = [
    concatenationLayer(1,2,"Name","concat")
    fullyConnectedLayer(outdim,"Name","fc")
    regressionLayer("Name","regressionoutput")];
lgraph = addLayers(lgraph,tempLayers);
% 清理辅助变量
clear tempLayers;
% 连接层分支
% 连接网络的所有分支以创建网络图。
lgraph = connectLayers(lgraph,"sequence","flatten");
lgraph = connectLayers(lgraph,"flatten","gru1");
lgraph = connectLayers(lgraph,"flatten","flip3");
lgraph = connectLayers(lgraph,"gru1","concat/in1");
lgraph = connectLayers(lgraph,"gru2","concat/in2");

代码效果图

获取代码请关注MATLAB科研小白的个人公众号(即文章下方二维码),并回复数据回归预测本公众号致力于解决找代码难,写代码怵。各位有什么急需的代码,欢迎后台留言~不定时更新科研技巧类推文,可以一起探讨科研,写作,文献,代码等诸多学术问题,我们一起进步。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MATLAB科研小白

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值