Mesh Saliency论文阅读

本文介绍了Mesh Saliency算法,用于评估三维模型中各点的重要性。通过计算点的平均曲率及其高斯滤波变化,构建高斯金字塔,确定关键点。算法应用于模型简化,改进QSlim算法,保留模型特征;并用于视角选择,优化视角以最大化显示模型的显著特征。实验表明,Saliency方法在模型简化和视角选择上表现优越。
摘要由CSDN通过智能技术生成

问题

判定mesh上各点的“重要程度”,这里的重要程度,基本上是指在不同尺度(分辨率)下,几何特征的重要程度。

基本思想

在求解各点的平均曲率基础上,计算该点平均曲率在邻域内的显著性。类似于二维图像中金字塔的方法,建立三维模型的金字塔。

算法

假设我们已经计算得到了三维模型每个点上的平均曲率 C ( v ) \mathscr{C}(v) C(v),以高斯函数为权重(实际上就是一个带权的邻域,但通过全局计算,避免了对邻域直接求解),取 σ \sigma σ为高斯函数方差(或半径),按照下式计算其高斯滤波后的平均曲率 G ( C ( v ) , σ ) G(\mathscr{C}(v), \sigma) G(C(v),σ)

G ( C ( v ) , σ ) = ∑ x ∈ N ( v , 2 σ ) C ( x ) e − ∥ x − v ∥ 2 / ( 2 σ 2 ) ∑ x ∈ N ( v , 2 σ ) e − ∥ x − v ∥ 2 / ( 2 σ 2 ) G(\mathscr{C}(v), \sigma)=\frac{\sum_{x \in N(v, 2 \sigma)} \mathscr{C}(x) e^{-\|x-v\|^{2} / (2 \sigma^{2})}}{\sum_{x \in N(v, 2 \sigma)} e^{-\|x-v\|^{2} / (2 \sigma^{2})}} G(C(v),σ)=xN(v,2σ)exv2/(2σ2)xN(v,2σ)C(x)exv2/(2σ2)

通过对不同 σ \sigma σ的选取,事实上我们建立了三维模型的高斯金字塔。对于一个给定的 σ \sigma σ,重要程度 S ( v ) \mathscr{S}(v) S(v)计算方式如下:

S ( v ) = ∣ G ( C ( v ) , σ ) − G ( C ( v ) , 2 σ ) ∣ \mathscr{S}(v)=|G(\mathscr{C}(v), \sigma)-G(\mathscr{C}(v), 2 \sigma)| S(v)=G(C(v),σ)G(C(v),2σ)

显然,这和二维图像中计算特征点的方式也非常类似。

如果我们选择了多个不同的 σ i \sigma_i σi,那么我们也可以得到不同的 S i \mathscr{S}_i Si。对于不同分辨率下的Saliency,我们通过加权求和得到最终的Saliency。加权的原则是,如果Saliency方差越大,权重越大,方差越小,权重越小。因此我们首先对 S i \mathscr{S}_i Si

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值